
 1

The Skip-Innovation Model for Sparse Images

Paul J. Ausbeck Jr.
Caravian Software Designs

74 Carlyn Ave
Campbell, CA 95008

paula@alumni.cse.ucsc.edu

Abstract

On sparse images, contiguous runs of identical symbols often occur in the same
coding context. This paper proposes a model for efficiently encoding such runs in a two-
dimensional setting. Because it is model based, the method can be used with any coding
scheme. An experimental coder using the model compresses the CCITT fax documents
2% better than JBIG and is more than three times as fast. A low complexity application
of the model is shown to dramatically improve the compression performance of JPEG-LS
on structured material.

1. Introduction

Scanned facsimile documents typically contain far more white pixels than black.
Synthetic material such as charts, graphs, maps, figures, and clip-art tend to contain
relatively large contiguous areas of uniform color. The more significant bitplanes of a
wavelet decomposition may contain relatively more zeros than ones. All are examples of
the class of sparse images.

An image need not be dominantly one color to be considered sparse. In this paper
sparse simply means that pixel color changes occur significantly more infrequently than
do pixels. An image does not need to be uniformly sparse to be considered sparse. For

example, composite material may contain
sparse and non-sparse regions.

A related property that many sparse
images exhibit is that of raster structure. A
structured image contains features of
significant extent whose boundaries can be
tracked from scanline to scanline using a
compact neighborhood template. For
example, images (a) and (b) from Figure 1

both exhibit raster structure. A conditioning context of say the four nearest causal
neighbors places all color changes in a non-uniform context. While sparse, image 1(c)
may or may not be structured. If each “star” in the field exhibited significant extent, it
would be considered structured, However, if each “star” contained only a single pixel,
this image would be unstructured. While the methods of this paper are applicable to all
sparse images, they are most effective on sparse images that exhibit some raster structure.

When coding sparse images, the key problem is to code the space between features as
quickly as possible while compressing both features and non-features alike as compactly
as possible. The first contribution of this paper is a model for switching back and forth

cba

Figure 1
Toy Sparse Images

 2

between two-dimensional coding for features and one-dimensional coding for non-
features. This model naturally leads to an adaptive run length code that is inherently
embedded in a two-dimensional setting. Because of this embedding, arithmetic coding
and context models can be applied to each run-length code bit to further reduce the
descriptive length of non-features.

The structure of the paper is as follows. First, the applicable prior art is examined.
Next the skip-innovation model is introduced. Skip-innovation codes for use with this
model are then presented. A context model for compressing such codes is then described.
Experimental results are given followed by conclusions.

2. Review of Sparse Image Coding Techniques

One dimensional run-length coding was first applied to sparse-images in 1959[1].
Two-dimensional extensions to this basic technique led to the CCITT Group 4 Fax
standard[2]. These early constructions were not adaptive and were tuned for images of a
specific size.

A major advance came with the application of multiple context adaptive arithmetic
coding to compression of black and white images[3]. Very early, it was recognized that
more attention should be paid to accelerating the coding path of the most probable
symbol (mps) even at the expense of the least probably symbol (lps). The most important
developments along this line have been the skew-coder[3], the Q-coder[4], and most
recently the Z-coder[5]. However, even with fastest possible mps path, arithmetic coding
remains an inherently serial task. This is especially an issue for software
implementations.

Accordingly, significant attention has been focused on so called “low complexity”
approaches. One of the tenants of the low complexity approach has been the use of
Golomb codes[6] to represent contiguous runs in the same context. This basic idea has
been refined by techniques for adaptively changing the Golomb parameter, m, within a
single run. The block-MELCODE of the proposed JPEG-LS standard[7] is the best
known example of this technique.

As long as the average run length within the same context is long enough, the
compression efficiency of Golomb codes and arithmetic codes is indistinguishable.
However, once a Golomb run mode has been entered, it is difficult to take advantage of
any changes in the coding context during a run. Runs are continued until the next lps
occurrence which typically occurs in a different coding context. This results in context
mixing and loss of compression efficiency.

Because adaptive Golomb codes cannot match the compression performance of
arithmetic codes, recent work has focused on an accelerated arithmetic coding mode for
contiguous symbol runs in the same context. This technique was first proposed in the
context of the QM coder[8]. More recently a similar technique for accelerating the skew-
coder has been suggested[9].

The basic idea is to scan ahead to obtain the length of contiguous runs of uniform
context. Groups of mps’s are then coded within the extended uniform context. The length
of each group is the number of occurrences necessary to force an mps renormalization or
the residual if it is less than that necessary to force the next renormalization. Obtaining

 3

the length of each group, especially the initial and residual groups, requires a division in
the Q-coder. In the skew-coder this can be done with shifting and masking.

3. The Skip-Innovation Model

The first model for accelerated coding of sparse images was proposed in the context of
palette images[10]. There it was recognized that whereas acquisition of image features
largely takes place in uniform contexts, coding of previously acquired features largely
takes place in non-uniform contexts.

To take advantage of this characteristic, a
new decision is introduced into the coding
model. When a uniform context is
encountered, its length is determined and a
decision is coded as to whether or not it can be
skipped entirely. Runs that cannot be skipped
are coded in the normal unary fashion. For
example the two black features on Figure 2 are separated by a run of seven uniformly
white coding contexts. Using the skip model this run is coded as a single affirmative skip

decision.
Skip failures are the result of new features

needing introduction to the model. The
position of these new features, or innovations,
is the information that must be conveyed by
the coder. The example of Figure 3 shows an
innovative central feature located four pixels
into a contiguous context of length seven.

This paper advances on the skip plus unary model by proposing binary coding for
innovations. The combined codes, called skip innovation codes, are described next.

4. Skip-Innovation Codes

Skip innovation codes are related to Golomb codes. The skip decision, S, can be
viewed as the magnitude or unary portion of the code, the innovation, I, as the binary
portion. The length of the unary portion of the code is always one. The basic length of the
binary portion is the ceiling of the base two logarithm of S. As with Golomb Codes, the
basic length of I can be significantly reduced if S is not a power of two. The procedure
used for constructing skip-innovation codes is as follows:

 Count the number, S, of uniform contexts that occur before the next occurrence of
a non-uniform context.

 Counting no more than S, count the number of pixels, I, to be coded whose value
is identical to that populating the coding context.

 If I S , encode a one, otherwise encode a zero and:

 Determine  D S log ()2 , the number of binary digits required for a maximal I.

 Form a D digit binary representation of I.
 For each digit of the binary representation of I starting from the most significant:

Figure 2
Skip

Figure 3
Innovation

 4

 Determine the minimum value T that would be encoded if that digit took on a
value of one and previous digits took on their previously encoded values.

 If T S encode the digit.

The codes generated by the aforementioned procedure for values of S and I up to
seven are shown in Table 1.

For m not equal to a power of two, Golomb assigned the shorter binary sequences to
shorter run lengths. Perhaps somewhat counterintuitively, the shorter skip-interval codes
are assigned to longer runs. The first reason for this is obvious. The most frequent value
for I is S, representing the lack of innovation. The second reason is more subtle.

Certain irregular or low slope features may
be untrackable by a reasonably sized context
model. The smaller the context model, the
more likely a feature is to fall into this
category of pseudo-innovations. For example,
on Figure 4 the pixel labeled with a arrow is a
pseudo-innovation. It is connected to a larger
feature already known by the model but the
model is too small to make a local determination. In this case, S is six and I is five
resulting in the SI code of 011, one bit shorter than the basic code length of D 1.

Note that the SI code generation mechanism is extremely simple and efficient. In fact,
it was originally chosen just for these properties. Only after several failed attempts at
improvement was it recognized that skewing the code distribution towards S was a
natural way to take advantage of the increased likelihood of pseudo-innovations
appearing near S.

5. Context Models

Since skip-interval codes are part the image model, adaptive airthmetic coding can be
used to further match them to the source material. A convenient context for coding S is
D, previously calculated to determine the maximum possible number of binary code
digits. To the extent that skips of various sizes are not uniformly distributed, using D as a
context model for S can reduce the overall code string length.

I S=1 S=2 S=3 S=4 S=5 S=6 S=7
0 0 00 000 000 0000 0000 0000
1 1 01 001 001 0001 0001 0001
2 1 01 010 0010 0010 0010
3 1 011 0011 0011 0011
4 1 01 010 0100
5 1 011 0101
6 1 011
7 1

Table 1
Skip-Innovation Codes for S = 17

Figure 4
Pseudo-Innovation

 5

Often, multiple innovations are located in a failed skip. Due to the structure of the SI
codes, I will contain multiple leading zeros when the distance between innovations is
substantially less than the skip length. The following context model can be used to
capture this structure:

 Allocate one context for each bit of the maximum possible skip length.
 Designate one additional context the lumped context.
 Initialize a variable, ONE_SEEN to zero.
 From the most significant bit position of I to the lowest:

 Code the bit under its positional context if ONE_SEEN is zero and under the
lumped context otherwise.

 If the coded bit is a one, set ONE_SEEN to one.

On black and white documents, the average black run often differs substantially from
the average white run. Therefore it is useful to double number of contexts used for coding
the SI bits.

6. Mixing SI Codes and Unary Codes

SI codes are designed for use as an alphabet extension mechanism in line oriented
image codes. Such extensions allow a coder to switch between normal pixel at a time, or
unary, coding and run length coding. The SI mechanism differs from conventional one-
dimension run length coding in that it is inherently embedded in a two-dimensional
coding process. SI never codes information in more than one context and therefore does
not lose any of the benefit of any two-dimensional model that may be in use.

The two-dimensional nature of SI creates one subtlety that may not be immediately
apparent. A typical one-dimensional run length code, in addition to encoding a run of
identical pixels, also imparts some information about the pixel immediately following a
coded run. The additional information imparted is that the following pixel is different
from the coded run of pixels. On a black/white image this additional information is
enough to completely determine the following pixel’s value.

The SI mechanism is slightly different in that it only imparts information about the
following pixel when a skip failure has occurred. The pixel immediately after a
successful skip may or may not be of the same color as the just skipped run. The follow
procedure shows how a decoder intermixes SI and unary codes on a single scanline of a
black/white image:

 For each pixel location on the scanline
 If the current pixel’s coding context is non-uniform

 Decode the pixel in the conventional unary fashion.
 Advance the current pixel pointer one location.

 Otherwise
 Decode a skip-innovation code
 If I S , skip forward S pixel locations filling skipped pixels with the

current color.
 Otherwise:

 Skip forward I locations filling skipped pixels with the current color.

 6

 Fill the current pixel using the information that it is different from
the current color and advance the current pixel pointer one column.

7. Experiments

7.1 Behavior of Skip-Innovation Codes on Highly Structured Material

A set of four synthetic CCITT-sized black and white images was devised to evaluate
the performance of skip innovation coding on large, smooth features. The first of these
images is uniformly white, the second is composed of several randomly oriented lines,
the third, randomly oriented edges and the fourth, ellipsoidal edges.

Two versions of the depth one Piecewise-Constant codec[10] were then modified to
use skip-innovation codes. The first of these uses a ten pel neighborhood context with
arithmetic coding and is designed to closely match the default behavior of the JBIG
codec. The second uses a four pel template without arithmetic coding and is designed to
match the complexity of the JPEG-LS codec. In the following discussion they are
designated SI and SI-jls respectively.

In Table 2, SI and SI-jls are
compared against JBIG, JBIG without
typical prediction (designated QM) and
JPEG-LS. Each table column contains
compressed file sizes (bytes) with
compression times comprising the final
row. The results show that SI is a much
more robust acceleration mechanism
than JBIG typical prediction. Typical
prediction works well on the uniformly
white image where all scanlines are
identical but fails completely on the

randomly oriented features.
Perhaps somewhat surprising is that SI compresses ~20% better than JBIG. This is

fairly impressive since all the savings must come from the two uniform contexts. JBIG
places ~2,400 bytes in the uniform contexts, so SI compresses them ~38% better.

The adaptive golomb code used by JPEG-LS is not competitive on these structured
images. The SI-jls results show what could be expected if skip interval codes were used
as the alphabet extension mechanism JPEG-LS*.

7.2 Adversarial Behavior of SI codes

Innovation with no extent is the adversary to the skip-innovation model. So for the
next experiment, CCITT-sized “star fields” of varying density were synthesized using a
noise plus quantization process. At the highest “star” density approximately half the
image information resides in the uniform context of a ten pel neighborhood. The

* To exactly match the SI-jls results, JPEG-LS would also have to to use slightly modified predictive codes that take advantage

of the limited number of colors in the image. However, in this experiment the number of redundant predictive bits emitted
by JPEG-LS is not very significant.

Image SI JBIG QM jpeg-ls SI-jls
white 21 22 24 343 292
lines 1,429 1,920 1,869 11,729 4376
edges 1,348 1,687 1,646 10,714 3705
circles 1,037 1,135 1,239 8,017 3064
Total 3,835 4,764 4,778 30,803 11437
Time 0.7 4.1 6.0 2.3 0.5

Table 2
Highly Structured B/W Images

 7

approximate number of “stars” in each field is shown in the first column of Table 3.
Coding results for the five methods used in the previous experiment are shown in
subsequent table columns.

The surprising result, at
least to the author, is that
the compression
performance of SI is
virtually indistinguishable
from the QM coder. This
indicates that SI can be
used as a general purpose
acceleration model. And
since it is model based, SI
can be used with any
arithmetic coder. The down
side is that the use of SI
changes the coded bitstream, so unlike coder specific speedup mechanisms its use is not
optional.

The compression performance of the non-arithmetic coding SI variant is
approximately 20% worse than JPEG-LS. The difference is due to the inherent two
dimensional nature of the SI mechanism. A one-dimensional model is actually better
matched to this type of image. Once in run mode, JPEG-LS pays no attention to the
surrounding context so its average run length can be longer. SI-jls makes more unary
decisions which without arithmetic coding provide no compression. Fortunately, images
composed of isolated single pixel features are relatively rare in practice.

7.3 CCITT Fax Documents

Table 4 shows compression results for the CCITT Fax documents. Remarkably, SI
compression is almost 2% better than JBIG. This despite the fact that the JBIG
probability estimator is tuned for these images and despite the fact that only about 20%
of the information in these
images lies in uniform contexts.

The speed up achieved by SI
over JBIG (with typical
prediction) is ~3:1. To the
author’s knowledge this is the
first published experimental
data for any sparse image
arithmetic coding acceleration
mechanism. However, coder
specific acceleration methods
should be capable of similar
results.

Some of the SI-jls
improvement over JPEG-LS
can be attributed to redundant

Features SI JBIG QM jpeg-ls SI-jls
368,953 229,862 231,923 231,910 318,778 343,842
91,613 82,881 82,136 82,136 104,570 127,619
21,068 25,079 24,767 24,760 30,049 36,554
8,987 12,202 11,935 11,944 14,429 17,087
1,695 2,854 3,092 2,898 3,389 3,755

107 260 348 260 547 518
Time 4.6 8.2 9.0 5.0 3.7

Table 3
Star Fields

ccitt# SI JBIG jpeg-ls SI-jls
1 12,675 12,884 35,840 21,829
2 7,726 8,008 30,439 13,221
3 19,494 20,052 71,211 40,110
4 48,461 49,039 126,450 84,595
5 22,647 23,272 73,769 42,589
6 11,493 11,764 51,664 24,983
7 51,085 52,306 133,423 77,349
8 12,932 13,288 55,053 25,152
Total 186,513 190,613 577,849 329,828
Time 3.3 9.5 7.3 2.5

Table 4
CCITT Fax Reference Documents

 8

JPEG-LS predictive bits. However, the SI-jls results do show that relatively simple
changes would more closely match JPEG-LS to structured images. While not as good as
Group 4 fax, the compression achieved by SI-jls is significantly better than that
achievable by one dimensional methods.

7.4 PWC Palette Image Corpus

Table 5 shows results for
compressing the Piecewise-Constant
palette image corpus[11] with three
different versions of the Piecewise-
Constant Image Model. PWC uses edge
maps to determine where color changes
occur in palette images and can be
accelerated with the skip innovation
model.

Column PWC shows the
performance of the original streaming
version of PWC. Column PWC-S shows
the performance of a second version
that incorporated skips but used unary
coding for innovations. PWC-SI is a
recent version of the PWC coder that
uses the complete skip-innovation
model.

The compression gain shown in the
table is to a significant extent due to
other improvements. However the
performance gain from left to right is
largely attributable to sparse image
acceleration.

7.5 High Speed Compression/Decompression of Vector-based Material

Because the skip-innovation coding model is
symmetric it lends itself to compression of
dynamically created content of the type commonly
used on the Internet. Such content is often
synthetic or composite and as such is often both
sparse and highly structured. Examples of such
material include charts, figures, maps, clip art,
page backgrounds, and user-interface elements.

In Table 6 an example from each of these
classes was compressed using PWC-SI and PNG,

its closest competitor in terms of compression rate and efficiency. PWC-SI’s
compression rate is about two and a half times better than that of PNG. Remarkably,
PWC-SI matches PNG’s extremely fast decode speed on encode as well.

Image PWC PWC-S PWC-SI
benjerry 2,418 2,473 2,399
books 8,616 8,719 8,153
ccitt01 12,881 12,685 12,683
cmpndn 54,780 53,725 53,021
cmpndu 40,917 40,354 39,556
flax 107 171 142
gate 15,784 15,671 15,282
music 755 721 696
netscape 10,786 10,839 10,533
pattern 1,178 1,096 1,099
sea_dusk 646 696 678
stone 4,268 3,982 3,637
sunset 52,923 53,173 51,623
winaw 11,459 11,700 10,853
yahoo 4,443 4,461 4,350
Total 221,961 220,466 214,705
Time 8.0 4.1 2.4

Table 5
Adding Sparse Image Models to Streaming

PWC

Metric PNG PWC
Comp. Bytes 33,614 13,558
Comp. Rate 29.2:1 72.4:1
Encode (sec) 1.1 0.6
Decode (sec) 0.6 0.6
Enc/Dec (sec) 1.7 1.2

Table 6
Dynamic Content Examples

 9

7.6 Comparison of SI and JBIG2

Finally, it is interesting to
compare SI with the emerging
JBIG2[12] standard. As the first
row of Table 7 shows, the symbol
coding techniques used in JBIG2
perform quite well on textual
material such as that in the CCITT
Fax images. The first column of the table shows JBIG2’s lossless compression of all
eight images. With the addition of loss in column two, symbol coding becomes even
more successful resulting in significantly better compression. Column three of the table
restates SI’s compression and column four shows SI’s compression of JBIG2’s lossy
image. The second row of the table shows encode/decode times. This particular JBIG2
implementation[13] is very slow compared with SI. It is possible that SI or a similar
mechanism could be used to significantly accelerate JBIG2, especially on decode.

7.7 Experimental Notes

The arithmetic coder used in the experiments is the carry-free binary arithmetic coder
written by Don Speck[14]. The coder’s performance has been enhanced by replacing the
multiply/divide operation with a table lookup and multiply. At 50% probability the table-
lookup carry free coder is approximately 10% slower than the QM coder.

All compression times were obtained using a 200 MHz Intel Processor running
Microsoft Windows 98 Second Edition. The color feedback PWC coder used in the
experiments is available at http://www.caravian.com. PWC compression times were
obtained using the “-flip” option of the coder. Older versions of the PWC coder are
obtainable via email request from the author.

JBIG results were obtained using the JBIGKIT[15]. JPEG-LS results were obtained
using the HP Labs LOCO-I implementation[16]. LOCO times were as reported by the
program. PWC and JBIG results are time elapsed. PNG compression times were
simulated using efficient command line versions of Zip[17] and Unzip[18].

8. Conclusion

The skip-innovation model has been shown to be remarkably effective for accelerating
arithmetic coding of sparse images. The model is robust against adversarial images and
on images exhibiting two-dimensional structure it can significantly improve compression.
On the CCITT fax documents, SI provides a 2% compression improvement and 3x
speedup when measured against JBIG1.

Skip-innovation codes were developed and shown to be a two dimensional variant of
adaptive Golomb codes. A variable parameter, S, plays a similar role to the Golomb
parameter m. In contrast to m, S is instantaneously and inherently adapted to any two
dimensional structure exhibited by the source. A low complexity method of using SI
codes to match JPEG-LS to structured material was demonstrated. While the
compression performance does not rival arithmetic alternatives, the results suggest the
application domain of JPEG-LS might be expanded by using SI as an alphabet extension
mechanism.

 JBIG2 JBIG2+L SI SI+L
Size 148,376 103,322 186,513 167,122
Time 40/13.9 62/12.7 3.3/3.3 25/3.3

Table 7
JBIG2 on the CCITT Fax Documents

 10

9. References

[1] J. Capon, “A probabilistic model for run-length coding of pictures”, IRE

Transactions on Information Theory, IT-5, pp. 157-163, December 1959.

[2] R. Hunter and A. H. Robinson, “International Digital Facsimile Coding Standard”,
Proceedings of the IEEE, 68(7) pp. 854-867, 1980.

[3] Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black–White Images
with Arithmetic Coding”, IEEE Transactions on Communications, Vol. COM–29(6),
pp. 858–867, (June 1981).

[4] W. B. Pennebaker, J. L. Mitchell, G.G. Langdon, Jr., R. B. Arps, “An overview of the
basic principles of the Q-Coder adaptive binary arithmetic coder”, IBM Journal of
Research and Development, Vol. 32, Number 6, pp. 717-726, November 1988.

[5] Leon Bottou, Paul G. Howard, and Yoshua Bengio, “The Z-Coder adaptive binary
coder”, Proceedings Data Compression Conference, pp. 13-22, March 1998, IEEE
Press, Los Alamitos, California.

[6] S. W. Golomb, “Run-Length Encodings”, IEEE Transactions on Information Theory,
Vol. IT-12, pp. 399-401, July 1966.

[7] Marcelo Weinberger, Gadiel Seroussi, Guillermo Sapiro, and Michael W. Marcellin,
“The LOCO-I Lossless Image Compression Algorithm: Principles and
Standardization into JPEG-LS”, Hewlett-Packard Computer Systems Laboratory,
HPL-98-193, November 1998.

[8] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, New York, New York, 1993.

[9] Erik Ordentlich, David Taubman, Marcelo Weinberger, and Gadiel Seroussi,
“Memory Efficient Scalable Line-based Image Coding”, Proceedings Data
Compression Conference, March 1999, pp. 218-227, IEEE Press, Los Alamitos,
California.

10 Paul J. Ausbeck Jr, “A Streaming Piecewise-Constant Model”, Proceedings Data
Compression Conference, March 1999, IEEE Press, Los Alamitos, California.

[11] Paul J. Ausbeck Jr, “Context Models for Palette Images”, Proceedings Data
Compression Conference, March 1998, IEEE Press, Los Alamitos, California.

[12] Howard, P.G.; Kossentini, F.; Martins, B.; Forchhammer, S.; Rucklidge, W.J., The
Emerging JBIG2 Standard, IEEE Transactions on Circuits and Systems for Video
Technology,vol.8, (no.7), IEEE, Nov. 1998. p.838-48.

[13] AT&T Labs DjVu Codec, http://www.djvu.com/

[14] Don Speck, “Local Activity Level Classification Model for Continuous–tone
Coding”, document N198 submitted to ISO/IEC JTC1/SC29/WG1 June 29, 1995.

[15] Markus Kuhn, Version 0.9 of the JBIG–KIT, available via anonymous ftp at
ftp.informatik.uni–erlangen.de/pub/doc/ISO/JBIG/jbigkit-0.8.tar.gz.

[16] HP Labs LOCO-I/JPEG-LS Home Page, http://www.hpl.hp.com/loco.

[17] Mark Adler, Richard B. Wales, Jean-loup Gailly, Onno van der Linden and Kai Uwe
Rommel, Zip, http://www.cdrom.com/pub/infozip/Zip.html.

[18] Greg Roelofs, Unzip, http://www.cdrom.com/pub/infozip/UnZip.html.

