
 1

Context Models for Palette Images

Paul J. Ausbeck Jr.
Research Fellow

Department of Computer Engineering
University of California
Santa Cruz, CA 95064

paula@cse.ucsc.edu

Abstract

A family of two dimensional context models appropriate for palette images is
described. The models are designed for use with a binary arithmetic coder. A complete
image encoder/decoder using three models from the family is disclosed. The new coder is
compared against five alternate coding methods: JBIG bit plane coding, CALIC
predictive coding, CALIC plus palette ordering, and two dictionary methods, GIF and
PNG. The aggregate compression achieved by the new method on a corpus of fifteen
palette images is 25% better than the best alternate method. The appropriateness of the
corpus is validated by the similar aggregate compression achieved by the alternate
methods even though compression varies widely from image to image. Remarkably, the
new method achieves 20% better compression than a composite coder formed from the
best alternate method for each image.

1. Introduction

A palette image is composed of two components: color information contained in a
lookup table or palette, and image information composed of a series of palette indices. In
modern computer systems, palette images are ubiquitous. For example, the user interface
elements of most windowing operating systems are composed of palette images. Black
and white documents are a simple form of palette image. Almost every page on the
Worldwide Web contains one or more palette images. Figure 1 is a grayscale version of
the palette image serving as the banner of the Web site http://www.yahoo.com in October
of 1997.

In spite of their widespread use, an image model tailored for palette images has yet to
be devised. Palette images generally contain too few colors to make effective use of the
linear predictive models used in JPEG–LS and contain too many colors to avoid the
sparse context problem that arises when using neighborhood color models such as those
of JBIG. Table 1 shows the results of applying various coding methods to the grayscale

Figure 1
Typical Palette Image

 2

image of Figure 1. The first method is to separately code the image bit planes with JBIG,
the second method is CALIC predictive coding[1], and the last method is dictionary
coding via GIF. Perhaps surprisingly, the one dimensional LZW model used in GIF
performs better than either of the alternate two dimensional models. For palette images
that have not been converted to grayscale, the superior performance of dictionary coding
methods continues to hold true. For typical palette images a text model turns out to

perform better than the wrong image
model!

This paper proposes a new family
of piecewise–constant image models
that are optimized for describing
palette images. The new models
contain efficient mechanisms for

describing pixel locations where color changes occur and a novel method for guessing
unknown colors using known surrounding colors for probability estimation. The models
are fully adaptive and have relatively few parameters.

Three specific members of the family that efficiently represent a wide range of palette
images are also described. A new image coder based on these models is then compared to
several alternate techniques on a corpus of typical palette images. Analysis and
conclusions follow the experimental results.

2. A Palette Image Model

Whether synthetically produced or derived from continuous tone pictures, palette
images are characterized by the following three properties.

 They tend to contain far fewer colors than pixels.
 Pixels of the same color tend to be contiguous.
 The color of a pixel is statistically related to its surrounding colors.

The first two palette image properties lead to a characterization of such images as
piecewise–constant. For typical images, the constant color pieces or domains can be
either rectilinearly or diagonally connected. If boundaries between domains are known,
establishing the color of one pixel in a domain establishes the color of all pixels in the
domain. One role of a piecewise–constant image model is to efficiently describe
boundaries between arbitrarily shaped domains.

The statistical relationship of pixel colors propounded in property three is, for typical
palette images, not a linear predictive relationship. Because of the lack of a simplifying
model property, the sparse context problem makes it prohibitive to keep track of
complete neighborhood color statistics. In an image with 256 colors, even a first order
color model requires 256 255 model parameters. However, complete statistics are often
unnecessary.

Given a first order context, typically only one or a few following colors predominate.
This leads to the idea of using previously determined colors in the same context as
guesses. To maintain one guess for each context of a 256 color first order model, requires
only 256 model parameters.

Uncoded Bit Planes Predictive GIF
27,182 9,266 8,348 6,923

Table 1
Motivational Coding Example

 3

Boundary delineation and color guessing can only determine whether or not an image
pixel has the same color as some other pixel. Introduction of new colors or innovations
into the image model requires some other mechanism. The exact form of this mechanism
is unrestricted and can be accomplished via a standard technique such as linear
prediction.

A language for describing piecewise–constant images is shown in Table 2. It consists
of a sequence of questions posed by a piecewise–constant image decoder. The questions
are either binary decisions or can easily be decomposed into a sequence of binary
decisions. As such, the language is designed for use with a binary arithmetic coder.

The piecewise–constant modeling language is designed so that affirmative answers to
Q1–Q3 eliminate the need for a decoder to pose Q4. On images that match the model,
Q1–Q3 are answered predominantly in the affirmative and dominate both coding time
and resulting codestring length. When Q1–Q3 all fail the model reverts to the mechanism
used to answer Q4.

Any mechanism can be used to answer Q4 including linear predictive coding. In such
a case the piecewise–constant model can be viewed as a preprocessor to a linear
predictor. If adaptive context models are used for Q1–Q3, the worst case compression
overhead introduced by the piecewise–constant model is largely proportional to the
number of parameters used to estimate probabilities for Q1–Q3. The worst case
performance overhead is proportional to the number of times that Q1–Q3 are posed. Both
of these topics are covered more extensively in the following discussion.

3. Context Models for the Piecewise–Constant Language

An excellent context model for Q1 was proposed by Tate[2] in his work on coding
edge maps resulting from image segmentation of satellite imagery. The technique is a
variation of the neighborhood template model of Langdon[3]. Instead of using
neighboring pixels on a black/white image, neighboring edge segments are used to
determine a decision context. The construction is shown in Figure 2.

To completely specify an image partition, two edge locations are assigned to each
pixel. For boundary discovery scans in normal raster order, either the north and west or
the south and east edges are assigned to each pixel and the presence or absence of an
edge segment is determined by a Q1 decision. The following discussion defaults to north
and west assignment.

Q1 Is the current pixel’s color identical to that of a
specified rectilinearly connected neighbor?

Q2 Is the current pixel’s color identical to that of a
specified diagonally–connected neighbor?

Q3 Is the current pixel’s color identical to a
guessed value?

Q4 What is the current pixel’s color?

Table 2
Piecewise–Constant Image Model Language

Elements

 4

For each location L, Q1 is posed against the vertical dotted edge location on Figure 2
under the context determined by the eight solid edge segments on the figure. The western
edge together with the same surrounding edges form a context to pose Q1 against the
northern edge. The number of model parameters associated with this scheme is

256 512 768  , and the number of decisions is two per pixel.
The number of model parameters and decisions of the Tate model

can be reduced by taking advantage of boundary connectivity
constraints. Since in a piecewise–constant model the boundaries
separate contiguous domains, each end of a boundary segment must
connect with another edge segment. Because of this constraint, many
pixel locations require only one decision to determine domain
connectivity.

For example, if the answer to Q1 for the western edge of pixel L
is yes, and no other edges impinge on the lattice intersection labeled
with a dark circle associated with L on Figure 2, the answer to Q1

for the northern edge of the location must always be yes and a coding decision need not
be made. The average number of Q1 decisions needed to establish rectilinear
connectivity in an image varies between one and two decisions per pixel and for typical
images approaches one. The connectivity constraints also decrease the number of model
parameters associated with Q1 to 512.

On bilevel images, connectivity constraints are even more severe. Since only two
colors are available, a boundary lattice can never have an odd number of impinging
edges, only zero, two or four. This constraint reduces the number of Q1 decisions per
pixel to one and the number of Q1 model parameters to 256. Since the number of model
parameters is halved on two color images, and since there are only two possible colors,
better compression is achieved by including the color of one surrounding pixel in the
context model. For example, if the color of the pixel labeled C on Figure 2 is added to the
Q1 context model, the number of model parameters is restored to 512. This formulation
is equivalent to a nine pixel color model.

Q2 decisions are used to establish diagonal connectivity
in a piecewise–constant model. Diagonal connectivity is only
defined at lattice intersections where there is no rectilinear
connectivity. Figure 3 shows the two causal orientations of
diagonal connectivity at a lattice intersection, L, that has four
impinging boundary segments. Each potential diagonal
connection requires one Q2 decision. The number of
diagonal connections considered by the model drops quite
rapidly as the edge density decreases and is typically less than 0.5 decisions per pixel.

Domain color is usually more important than domain shape in conditioning Q2
decisions. For this reason Q2 decisions should only be made once the color to be
propagated across an diagonal connection is known. Connection orientation is also an
important conditioning criteria in many images. Using both orientation and color in a
context model for Q2 decisions requires two model parameters for every color used by an
image. On Figure 3 the two orientations are represented by the left and right glyphs and
the propagating color is labeled C.

L

C

Figure 2
Rectilinear

Context

L

C

L

C

Figure 3
Diagonal Contexts

 5

Color guessing, language element Q3, is designed to
model the neighboring color relationships in an image while
using a controlled number of model parameters. A guess is
simply some color that has occurred previously in the coding
process. The size of a guess model is proportional to D S
where D is the palette depth of the image and S is the
number of neighboring colors used in the model. To
maintain a reasonably sized model, the number of

neighboring domain colors used to condition Q3 must be carefully limited. For 256 color
images it is usually only profitable to include one neighboring color in the conditioning
context. The left glyph of Figure 4 shows a known pixel, C, used as a conditioning
context for the unknown pixel, L, to its east. The right glyph of the figure shows three
neighboring colors used as a conditioning context. The three color configuration is
normally only useful for palette images of depth four (sixteen possible colors).

The exact size of a guess model is determined by the number of guesses for which
statistics are maintained. One possibility is to maintain statistics for every possible color
occurring in each context. The size of this straightforward guess model is D S1 , no
different from a complete neighborhood color model. With such a large model, many
guesses are not very useful in determining color. Compression suffers because of the
large number of mostly useless parameters to be learned. Coding speed suffers because a
large number of mostly useless decisions are made.

One way to solve both of these problems is to
limit the number of guesses maintained
simultaneously by the model to some fixed number.
When limiting guesses, a mechanism is needed to
maintain only good guesses: guesses that are
mostly correct. One way to achieve this is through
guess competition in a guess pool.

Any competitive mechanism can be used in the
pool. One such mechanism is the least recently
used (LRU) chain. In this application a context is
moved to the front of the LRU any time its
associated guess is correct. When a new guess is
added to the pool and the pool has reached its
maximum size, the guess at the end of the LRU
chain is sacrificed. Figure 5 shows the guesses of a guess pool chained from lists
determined by a context identifier. The average number of guesses per context is the size
of the guess pool divided by the number of guess contexts. It should be emphasized that
the guess pool is global. Competition occurs both between guesses in the same context
and guesses in other contexts. The complete guess pool operation is as follows:

 When Q4 decision is made, the result is added to the head of the guess pool

LRU and to the tail of the appropriate decision context’s guess chain.
 When a Q3 decision is correct, its associated context is moved to the head of

its guess chain and to the head of the guess pool LRU.

LC LC

CC

Figure 4
Guess Contexts

GG

G

G

G

1

LRU

0

Figure 5
Guess Pool Structure

 6

 When the guess pool is full and a guess must be sacrificed, it is removed from
both its associated guess chain and the end of the LRU.

 The statistics of a Q3 context are only updated when they are actually used to
make a decision. No attempt is made to keep accurate conditional
probabilities.

 The statistics of a sacrificed Q3 context are decayed and kept as a prior for its
new role.

 Guesses that are known to be impossible from prior Q1 and Q2 decisions are
ignored.

4. An Example Piecewise–Constant Image Coder (PWC)

The piecewise–constant model components can be assembled in various ways to
handle different types of images. The following discussion describes a coder that uses
three variations on the piecewise–constant model to efficiently compress palette images
of depth one, four, and eight. The number of parameters used by each model variation is

summarized in Table 3.
The depth one model used by the example

coder uses the single color augmented eight
edge Q1 context. The model does not use Q2
and Q3 since they provide no additional image
information. Q4 is only needed to determine the
color of the first two domains in the image.
Thereafter, color is propagated via color swap.
Because Q4 is only posed two times, the
simplest Q4 model, one parameter, is used.

At depth four, the eight edge model without a neighboring color is used for Q1. The
three neighboring color model is used for Q3. Since this model has enough extent to
provide most of the same information provided by Q2, Q2 is not used. Although there are
4096 contexts, the size of the Q3 guess pool is only 256, providing an average of 0.0625
guesses per context. Since on typical images the majority of possible neighboring color
combinations never occur, the average number of guesses associated with each active
context is much higher. A predictive model with four activity classes similar to that
described by Don Speck[4] is used for Q4. The northern pixel is used for prediction and
the magnitude of the maximum difference in the western, northwestern, and northern
pixels is used to establish the activity class. The depth four coder performs a first raster
scan and establishes rectilinear–connectivity via Q1. A second scan establishes color
information via Q3 and Q4.

At depth eight, the edge only model is again used for Q1. The orientation augmented
single neighboring color model is used for Q2. The single neighboring color model with
the neighboring color obtained from the western pixel is used for Q3. The size of the Q3
context pool is 1024, providing four guesses per color on average. The predictive model
used for Q4 has eight activity classes. The prediction and activity class are established as
with the depth four coder. The two pass operation of the coder is also the same.

It should be noted that for many images the Q3 mechanism in the piecewise–constant
model obviates the need for a sophisticated model for Q4. In fact in the experiments of

Palette Model Parameters
Depth Q1 Q2 Q3 Q4

1 512 0 0 1
4 512 0 256 64
8 512 512 1024 2048

Table 3
Model Parameters

 7

the next section, a constant prediction in one activity class produced essentially the same
results as neighboring color prediction and multiple activity classes. The more
sophisticated Q4 mechanism only yields improvement if the image palette has significant
linear predictive structure that is not caught by the piecewise–constant model.

5. Experiments

A standard corpus for evaluating palette image coding models is not currently
available. Therefore significant effort was expended compiling a fairly representative
group of test images. The resulting fifteen images are summarized in Table 4.

The number of colors used in the test images varies from two to 246. The test set
contains completely synthetic images, error diffusion and nearest color quantized images,
and compound images containing both synthetic and natural elements. An attempt was
made to balance the number of bits of each source type. Some particular emphasis was
placed on obtaining palette images from popular sites on the Worldwide Web. The yahoo
image of line thirteen was shown previously in grayscale form in Figure 1.

Table 5 shows the results of the application of the piecewise–constant coder (PWC)
described here and four alternate coding methods to the test images. All data are file byte
counts and include header information. The header of the piecewise–constant file is 16
bytes long. The GIF, PNG, and PWC results contain either 6, 48, or 768 bytes of palette
color information. The JBIG Planes and CALIC results do not.

Image Depth Colors Size Source
benjerry 8 48 466x60 WWW – Ben and Jerry’s ice cream ad
books 4 7 179x318 MS Access – bookshelf motif
ccitt01 1 2 1728x2339 CCITT – reference document #1
cmpndn 8 223 512x768 JPEG–LS cmpnd1 nearest color reduced
cmpndu 8 246 512x768 cmpndn plus error diffusion
flax 4 3 170x102 MS Access – textile simulation
gate 8 84 564x108 SF Chronicle home page – banner
music 4 8 111x111 MS Office clip art – music motif
netscape 8 32 612x100 Netscape home page – banner
pattern 1 2 135x137 MS Access – noisy tiled pattern
sea_dusk 8 46 484x325 MS Access – synthetic sky & city
stone 4 3 169x133 MS Access – stone texture
sunset 8 204 640x480 MS Scenes – sunset, ice and mountains
winaw 4 10 633x465 pcAnywhere – startup banner
yahoo 8 229 460x59 Yahoo home page – banner

Table 4
Palette Image Corpus

 8

The results in the column labeled JBIG Planes were obtained by applying JBIG[5] to
the bit planes of each image. Empty and duplicate planes were eliminated from each
image total. For each image only enough planes were kept to uniquely determine the
number of colors used. To correct for duplicate file headers, eighty bytes were subtracted
from each JBIG total for each retained plane other than the first.

The third column of results were obtained using the arithmetic CALIC[1] predictive
coder. Of the JPEG–LS contributors, CALIC appears best suited to palette images. The
publicly available implementation obtained from http://www.csd.uwo.ca/~wu/index.html
was used. The results labeled CALICO were obtained by combining CALIC with palette
ordering[6]. The GIF and PNG results were obtained using the Paint Shop Pro image
utility[7].

The data of Table 6 are coding results for a palletized version of the JPEG–LS test
image, pc. They are shown because pc is a widely known test image, contains only six
colors, and can be converted to a depth four palette image without loss. This image is so
large that it would skew the corpus, so it is shown separately. The proposed JPEG–LS
standard with palette feature codes this image using 322,628 bytes. JBIG bit planes does
well on this image but is still 20% worse than PWC.

Image JBIG Planes GIF CALIC CALICO PNG PWC
benjerry 3,697 4,401 4,193 4,193 4,571 3,018
books 13,343 11,177 14,033 9,740 10,831 8,624
ccitt01 12,884 38,862 18,146 18,146 28,910 12,892
cmpndn 69,098 62,682 56,951 52,085 56,397 40,790
cmpndu 81,705 76,759 71,109 63,430 69,438 54,550
flax 226 846 379 194 318 175
gate 25,589 23,313 20,555 18,494 20,124 16,318
music 1,563 1,987 1,648 1,219 1,647 744
netscape 16,489 17,442 14,302 13,746 15,879 11,326
pattern 1,190 1,782 1,755 1,755 1,928 1,203
sea_dusk 1,647 6,362 1,446 1,069 2,540 1,289
stone 4,460 4,753 8,440 4,917 3,906 3,992
sunset 121,020 100,186 113,710 82,109 81,794 52,608
winaw 27,830 18,559 21,686 16,886 18,732 11,439
yahoo 8,126 7,097 6,884 6,884 6,275 4,492
total 388,867 376,208 355,237 294,867 323,290 223,460

Table 5
Comparison of Coding Methods

Image JBIG Planes GIF CALIC CALICO PNG PWC
pc 123,788 376,482 205,000 186,157 225,898 98,997

Table 6
Coding Results for the JPEG–LS pc Image

 9

Table 7 shows some key PWC coding statistics for the fifteen images of the test
corpus. The column labeled “Domains” is a count of the number of rectilinearly
connected domains in each image. The columns labeled with Q? are counts of the
number of each type of decision made during coding. The columns labeled H? are the
average entropies for each decision type.

As described previously, Q2 decisions are only made for depth eight images. Q3
decisions are only made for depths greater than one. Additionally, depth one images
require only two Q4 decisions. Due to the method used to obtain the measurements, the
accuracy of the tabulated entropy values degrades substantially for those decision buckets
containing fewer than several hundred decisions.

6. Performance

Using a research grade implementation, the PWC encoded images of the previously
described test set are decoded in 8 seconds on a 200 MHz Intel Pentium processor. This
is approximately 225 Kbit/sec decode performance, sufficient to keep up with a 128
Kbit/sec ISDN connection. Encoding is about 25% slower due to increased memory use.

7. Conclusion

A new piecewise–constant image model and a language for describing such models
has been proposed. The model is appropriate for application to palette image coding. An
example piecewise–constant image coder demonstrated remarkable compression on a
corpus of 15 palette images. The demonstrated compression is 20% better than a
composite coder formed by selecting the best of JBIG bit plane coding, CALIC

Image Domains Q1 H1 Q2 H2 Q3 H3 Q4 H4
benjerry 1704 32647 0.330 1022 0.845 7257 0.645 257 6.008
books 14527 84877 0.663 0 0.000 18418 0.593 453 2.808
ccitt01 1513 4041791 0.025 0 0.000 0 0.000 2 1.000
cmpndn 34445 462288 0.324 40380 0.592 155665 0.471 10603 6.873
cmpndu 61019 486937 0.297 88124 0.690 247177 0.480 15554 6.825
flax 16328 33906 0.018 0 0.000 16328 0.011 14 4.571
gate 15497 87841 0.625 19954 0.725 79404 0.462 2916 6.255
music 948 15244 0.283 0 0.000 1082 0.665 111 3.532
netscape 10385 83235 0.571 10862 0.769 36975 0.694 557 5.056
pattern 7142 28133 0.319 0 0.000 7137 0.010 7 4.571
sea_dusk 211 158628 0.020 4 1.000 1067 0.330 60 7.067
stone 6827 36070 0.793 0 0.000 7687 0.347 41 3.317
sunset 36925 390890 0.637 39594 0.664 122527 0.698 7158 7.540
winaw 9984 321561 0.255 0 0.000 11956 0.628 504 3.000
yahoo 3002 33519 0.444 3581 0.809 9425 0.609 815 7.539

Table 7
PWC Coding Statistics

 10

predictive coding with palette ordering, and PNG LZ77 deflation for each image of the
corpus. The appropriateness of the corpus was validated by the similar aggregate
compression achieved by the competing methods even though their performance varied
widely on individual images of the corpus.

The data show that the PWC coder is robust across a wide variety of images. The
compression achieved is as good (2% worse on stone) or better than the best of the
alternate methods on every image in the test set. Its aggregate compression is 31% better
than PNG, and 24% better than the combination of CALIC with palette ordering. The
other alternate methods are even less competitive.

8. Acknowledgments

The arithmetic coder used in the example coder is the carry free coder designed and
written by Don Speck[4]. The Golomb tree coder[8] used for coding prediction errors
was also done by Don. Nasir Memon graciously provided the palette ordering code used
in the comparison experiments.

9. References

1 Xiaolin Wu, “An Algorithmic Study on Lossless Image Compression”, Data

Compression Conference Proceedings, March 31–April 3, 1996, IEEE Computer Society
Press, Los Alamitos, California.

2 Stephen R. Tate, Lossless Compression of Region Edge Maps, CS–1992–9, Department
of Computer Science, Duke University, Durham, NC, 1992.

3 Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black–White Images with
Arithmetic Coding”, IEEE Transactions on Communications, Vol. COM–29(6), pp. 858–
867 (June 1981).

4 Don Speck, “Local Activity Level Classification Model for Continuous–tone Coding”,
document N198 submitted to ISO/IEC JTC1/SC29/WG1 June 29, 1995.

5 Markus Kuhn, Version 0.9 of the JBIG–KIT, available via anonymous ftp at
ftp.informatik.uni–erlangen.de/pub/doc/ISO/JBIG/jbigkit-0.8.tar.gz.

6 N. D. Memon and A. Venkateswaran, “On Ordering Color Maps for Lossless Predictive
Coding”, IEEE Transactions on Image Processing, 1996, Vol. 5, No. 11, pp. 1522–1527.

7 Jasc, Inc., http://www.jasc.com.

8 Don Speck, “Clarifying Some Details of ALCM”, June 1996, document N351 submitted
to ISO/IEC JTC1/SC29/WG1.

