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Abstract 

The piecewise-constant image model (PWC) is remarkably effective for compressing 
palette images. This paper discloses a new streaming version of PWC that retains the 
excellent compression efficiency of the original algorithm while dramatically enhancing 
compression performance. Further, compression throughput is made more constant, 
making it possible to code sparse images very quickly. 

1. Introduction 

The piecewise-constant image model[1] is a 
remarkably effective method for compression 
of palette images. PWC outperforms standard 
techniques on all types of palette images, and is 
particularly effective on images that exhibit 
significant two-dimensional structure. This 
year’s DCC call for papers* contains 17 images 
of the type that has seen widespread use on the Internet. PWC compresses these image 
exceptionally well and it was impossible to resist using them in an introductory 
comparison. Table 1 shows the total byte count for all 17 images when uncompressed, 
and when compressed with GIF, PNG, and PWC. 

Although initially targeted as an Internet graphics delivery medium, PWC suffers from 
two problems that limit its potential in interactive applications. The most important 
limitation in original PWC (hereafter designated PWC2) is that is makes two separate 
image passes. One pass establishes rectilinear domain connectivity and a second pass 
establishes domain color. 

The second drawback to PWC2 is that it is a completely unary method and must code 
at least one binary decision for every image pixel. This puts a floor on compression time 
that is proportional to image size, not image complexity. This is unacceptable in that 
many palette images are quite sparse and code extremely fast with conventional methods. 

This paper describes a new streaming version of PWC. Streaming is affected by 
making two passes over each scanline instead of over the entire image. Compression 
speed is enhanced by a new method for skipping over uniform portions of an image. The 
skip mechanism simultaneously improves compression efficiency and eliminates high-
skew decision streams. The mechanism has general utility. 

                                                 
* http://www.cs.brandeis.edu/~dcc/ 

 

BMP GIF PNG PWC 
251,986 25,542 19,733 8,275 

Table 1 
Compression of Images from the 

1999 DCC Call for Papers 
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2. Two-Pass PWC 

The piecewise-constant image model composes an image from rectilinearly connected 
domains each having a constant color. Boundaries between domains and domain colors 
are described with binary decisions. The four types of decisions made when describing a 
PWC model are shown in Table 2.  

In the PWC2 coder, domain boundaries are established in a first image pass and 
domain colors are established in a second pass. With the two pass technique, the color of 
a domain need only be acquired once. For example, Figure 1 shows a fragment of the 
JPEG-LS compound document #1. Even though the fragment contains only two colors, it 

is embedded in a 256 color image precluding simple 
color assumptions. 

In the two-pass technique, the extent of concave 
domains such as the ‘H” of Figure 1 is completely 
defined in the first pass. When such a domain is 
initially encountered in the second pass, its color is 
established with decisions Q2-Q4 and then 
completely propagated throughout the domain via a 
flooding process. 

3. Streaming PWC 

The basic strategy of streaming PWC is to make two passes through each scanline. 
The first pass makes Q1 decisions to establish rectilinear connectivity within the scanline 
and to the previous scanline. The second pass determines the color of each domain stripe 
by making Q2-Q4 decisions. 

The requirements for the color determination pass are somewhat subtle. The key point 
is to avoid making unnecessary color decisions. For example, once the color for the roof 
of the “T” in Figure 1 is established on the first scanline it is possible to propagate the 
color down the trunk without making further color decisions. Similarly, though the color 
of the “H” must be determined twice on the first scanline, color propagation is possible 
on subsequent scanlines. Perhaps not as obvious is that color propagation is also possible 
for the cross of the “t”. 

Streaming PWC maximizes color propagation by making two color determination 
passes over each domain stripe. The first pass does not make any coded decisions. On the 

Q1 Is the current pixel’s color identical to that of a 
specified rectilinearly connected neighbor? 

Q2 Is the current pixel’s color identical to that of a 
specified diagonally–connected neighbor? 

Q3 Is the current pixel’s color identical to a 
guessed value? 

Q4 What is the current pixel’s color? 

Table 2 
Piecewise–Constant Language 

 

Figure 1 
Excerpt from JPEG-LS 

Compound Document #1 
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second pass, the boundary model built by the connectivity pass is consulted to determine 
whether or not a color can be propagated from the previous scanline. If a pixel on the 
previous scanline is not separated from the current scanline by the boundary model, its 
color becomes the propagation color. Colors lying above horizontal edges in the 
boundary model are marked as impossible. 

If color propagation is not possible, impossible color information is then used to filter 
Q2 and Q3 decisions in a Q2-Q4 color determination sequence. The streaming algorithm 
is summarized thusly: 

 For each image scanline 
 Make a first pass and make Q1 decisions to determine rectilinear connectivity. 
 On a second color determination pass, for each domain stripe: 

 Make a first pass to determine the possibility of color propagation and 
mark impossible colors. 

 If color propagation is not possible, determine the stripe color via a 
Q2-Q4 sequence that skips impossible Q2 and Q3 decisions. 

 Make a second pass along the stripe to update the color model. 

4. Performance Considerations 

Several performance enhancements make PWC significantly faster than PWC2. The 
enhancements focus on reducing the number of coded decisions. A secondary 
consideration is reducing the necessary precision in the statistical coder. 

4.1 Connectivity Constraints 

For conditioning Q1 decisions, 
both PWC2 and PWC use the edge 
model proposed by Tate[2]. At each 
separator lattice location, L, a Q1 
decision is made to determine the 
presence or absence of a vertical 
edge. Once the vertical edge state is 
known, connectivity constraints 
often deterministically determine the 
horizontal edge state. To the extent 
that determinism operates, the 
number of decisions that must be 
statistically coded is reduced. 

The following analysis develops 
an upper bound on the rectilinear 
decision entropy. If p  is the zero 
order probability that a separator 
lattice site is full, then the probability 
that a horizontal separator is deterministically determined is: 

D p p p p( ) ( ) ( )   1 3 13 2 . (1) 
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Figure 2 
Deterministic Decision Probability 
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D p( ) is plotted in Figure 2. 
Given p  as before, the vertical decision entropy is: 

H p p p p p1 2 21 1( ) log ( ) ( ) log ( )     . (2) 

The horizontal entropy adjusted for 
determinism is: 

H p D p H ph ( ) ( ( )) ( ) 1 1 , (3) 

and the total edge entropy is 

H p H p H ph2 1( ) ( ) ( )  . (4) 

The maximum of H2  is 1.607 and 
it occurs at a full edge probability of 
0.632. H2  is plotted in Figure 3. Note 
how H2  approaches the single 
decision entropy, H1 , at low p  and 
approaches 2 1H  at high p . On 
sparse images only one Q1 decision 
need typically be made at each 
separator lattice location. 

 

4.2 Skipping Inactive Areas 

One decision is better than two, but PWC2 must code at least one decision for every 
image pixel even if the image is completely uniform. Since palette images often contain 
large uniform areas that code very fast with conventional methods, streaming PWC 
contains a new hybrid unary/run length model that accelerates coding of sparse images. 

The surprisingly simple solution introduces a new decision to the PWC language. An 
inactive location is defined as a location where the edge decision context model contains 
no edges. During an edge scan when an inactive location is encountered, PWC makes a 
decision that determines whether or not to skip to the next active location. The new 
decision, designated Q0, is shown in Table 3. Q0 decisions are made under a special skip 
context. 

If a Q0 decision is made to the 
affirmative, the algorithm skips forward to 
the next active context and continues normal 
processing. If a skip occurs, the edge model 
need not be updated since the skipped 
locations remain inactive. If a skip cannot be made, PWC temporarily disables skip 
processing until the next edge is discovered through normal unary processing. 

The skip mechanism actually yields better compression efficiency than the completely 
unary model. The reasons for this are two fold. First, skip decisions are relatively 
infrequent. And second, inactive edge decisions are now made in two contexts, the skip 
context and the normal inactive context. 
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Figure 3 
Total Edge Map Decision Entropy 

Q0 Skip to the next active location? 

Table 3 
New Skip Decision 
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4.3 A Better Predictor for Q4 

PWC2 uses a predictive model with multiple activity classes[3] for Q4. The three 
closest causal pixels are used to select the activity class. The predictor used is the single 
previous pixel on the same scanline. While this simple predictor works reasonably well 
for typical palette image, it is unsatisfactory for grayscale images.  

Many predictors that work well for grayscale images misbehave on typical palette 
images. One predictor that performs well on both types of images is that used in LOCO-
I[4]. The LOCO-I predictor consists of a three pixel planar predictor augmented with a 
simple edge detector. 

Using this predictor, streaming PWC compresses grayscale images significantly better 
than PWC2. Compression of typical palette images is also improved by approximately 
0.5%. Better prediction also leads to slightly fewer statistically coded decisions and 
somewhat improved performance. 

4.4 Low Precision Arithmetic Coding 

Both versions of PWC use Don Speck’s carry-free coder[5] for statistical coding of 
binary decisions. This coder goes back to the roots of arithmetic coding to avoid IP issues 
associated with more modern coders. Statistics are kept as counts and the coding interval 
is split with a multiply/divide operation. Both versions of PWC augment the basic coder 
with 3-4-5 adaptation where statistics are halved whenever the lps count reaches six. 

The maximum count value used in PWC2 is 65,535. This is to accommodate the high 
skew of the inactive edge decision context. With its skip model, streaming PWC can get 
by with a maximum skew of 255. This allows for a 16 8 8 16    bit multiply/divide 
operation and reduces the necessary Intel Pentium CPU cycles from 52 to 36. 

The combination of the skip model with accurate coding of low skews also produces 
excellent compression. In fact, as is shown in the experiments, the combination does 
better than JBIG on the CCITT test documents. This is probably because state driven 
arithmetic coders such as the QM code of JBIG exhibit small inefficiencies as decision 
probability approaches 50%. Several recent efforts have focused on this problem[6],[7]. 

5. Depth One Model Optimization 

The edge model is overkill for depth one images, and to attain reasonable speed 
streaming PWC uses a 10 pixel neighborhood color model on two color images[8]. In the 
reduced model, the inactive criteria becomes either uniformly white or uniformly black. 
Statistics for the two “colors” of skip decisions are kept separately. On the CCITT test 
documents, a white only inactive criteria yields better compression than the symmetric 
criteria. This is because uniform black areas are relatively short. 

In this environment, the skip information is mostly wasted. For example, if a uniform 
black area is only one column wide, a negative skip decision determines that the next 
pixel is white. The wasted information can be recaptured by making non-skipped color 
decisions in more than one context. The base two logarithm of the remaining skip length 
works well as a conditioning function. 
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6. Experiments 

The major new consideration for streaming PWC 
is that the color of a concave domain may have to 
be acquired multiple times. Intuition indicates that 
reacquisition should occur relatively infrequently in 
practice. To verify this assumption, it is instructive 
to compare streaming PWC against the original 
two-pass algorithm (PWC2) on the palette image 
corpus. The results of Table 4 show the average 
compression achieved by streaming PWC to be 
only 0.6% worse than a slightly improved version 
of PWC2.  

The version of PWC2 used in this test does not 
include all the improvements incorporated into 
streaming PWC. In particular, streaming PWC 
contains the skip mechanism, an improved 
predictor, and improved tracking of impossible 
colors. Nevertheless, the actual coding penalty for 
color reacquisition is small. The author’s estimate is 
somewhere between two and three percent for the 
palette image corpus. 

6.1 JBIG Comparison 

The penultimate change in streaming PWC is the 
ability to skip over inactive portions of each scanline. However the skip mechanism is 
only responsible for about half of the performance gain seen in the last row of Table 4. 
An initial version of the streaming coder without the skip mechanism requires 7.8 

seconds to encode the palette image corpus. 
Another data point of note in Table 4 is that 

streaming PWC actually compresses CCITT 
black/white reference document #1 better than 
PWC2. In fact, over the entire set of eight CCITT 
documents, PWC yields 3.3% better compression 
than PWC2. Surprisingly, none of this difference is 
due to the change from an edge model in PWC2 to a 
pixel model in PWC. The improvement is due solely 
to the skip mechanism! 

As the results of Table 5 show, over the entire set 
of eight CCITT documents, PWC is actually 1% 
better than sequential JBIG. The reason is that the 
skip mechanism obviates any need for the arithmetic 
coder to handle high skews. The arithmetic coder in 
PWC uses relatively low precision but its entire 
precision is dedicated to accurately representing 

relatively low skews. 

Image PWC2 PWC 
benjerry 2,387 2,473
books 8,630 8,719
ccitt01 12,890 12,685
cmpndn 40,390 40,354
cmpndu 53,951 53,725
flax 149 171
gate 15,530 15,671
music 735 721
netscape 10,649 10,839
pattern 1,174 1,096
sea_dusk 657 696
stone 4,001 3,982
sunset 52,341 53,173
winaw 11,440 11,700
yahoo 4,374 4,461
Total 219,218 220,466
Time 22.8 4.1

Table 4 
Streaming vs Two-Pass PWC 

CCITT# JBIG PWC 
1 12,884 12,685
2 8,008 7,858
3 20,052 19,834
4 49,039 49,074
5 23,272 22,994
6 11,764 11,579
7 52,306 51,570
8 13,288 13,132
Total 190,613 188,726
Time 9.5 7.2

Table 5 
CCITT Black/White Test 

Documents 
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Further, even though it uses a relatively slow arithmetic coder, PWC is 25% faster 
than JBIG. Of course this is only true for images where one color predominates but this 
condition is often met in practice. PWC is still relatively immature and it is likely that its 
encode speed can be improved with a better implementation. 

6.2 An Expanded Performance Comparison 

Many of the images in the original PWC test corpus are quite small and are not very 
suited for performance analysis. For this reason an expanded corpus was devised to better 
map PWC performance. The expanded corpus, summarized in Table 6, contains five 
image groups. Each group is designed to cover a specific performance regime. 

 

Four high performance reference coding methods, bzip[9], PNG, GIF, and JPEG-LS, 
were compared against PWC on the expanded corpus. Compression and performance 
results are summarized in Table 7 and Table 8 respectively. Since bzip, PNG, and GIF 
are assymetric, both encode and decode times are shown separated by a slash. Two 
encode times are shown for JPEG_LS. The first time is measured elapsed time. The 
second time is the compression time reported by the locoe program. 

 

The compression results of Table 7 demonstrate that PWC operates well across a wide 
variety of palette images. PWC achieves the best compression on every image group 
excepting the grayscale representative, lena. Compression is respectable even on lena. 

Even though PWC is a fairly complicated model, performance is quite reasonable 
compared to other encoders. However, the extremely fast decode speed of the dictionary 
methods appears to be unattainable by PWC-like methods. 

 

Name Description 
bw CCITT black and white facsimile documents 1-8 
pc JPEG-LS test document pc reduced to one color component 
dither Color reduced images with heavy dithering: arial and fractal 
lena USC Lena 512x512 converted to grayscale 
corpus Original PWC palette image corpus 

Table 6 
Performance Test Corpus 

 PWC bzip PNG GIF JPEG-LS 
ccitt 188,726 372,640 418,490 464,437 577,849 
pc 104,033 198,723 225,936 376,482 361,570 
dither 481,270 485,321 544,694 645,732 559,652 
lena 162,478 173,645 223,051 230,921 138,883 
corpus 220,426 288,363 323,290 376,208 415,734 
total 1,156,933 1,518,692 1,735,461 2,093,780 2,053,688 

Table 7 
Compressed File Byte Counts 
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PWC performance is 
relatively poor on highly 
dithered and grayscale images. 
The reason is that PWC is 
going through its entire 
decision structure and gaining 
only relatively modest 
additional compression for each 
decision. Table 9 shows 
decision counts and decisions 
per pixel (Dpp) for each of the 
example image groups. On the dither group, PWC is actually making almost 1.25 
decisions for each uncompressed image bit. Perhaps surprisingly, the amount of time 
spent on the arithmetic multiply/divide operation never exceeds 20% of the total 

compression time. 
Even on the dither group, none of the 

PWC decisions are entirely wasted. If 
decisions Q0-Q3 are turned off, Dpp 
drops to 8.5 but the total compressed file 
size increases 22%. Compression time 
decreases 43% and the percentage of time 
spent on arithmetic multiply/divide 
increases to 34%. 

 

7. Analysis 

PWC throughput ranges from 26.2 to 
76.6 Kbytes/sec on the ccitt and dither 
groups respectively. Average throughput 
is probably close to that exhibited on the 
corpus group: 54.2 KB/sec. Significantly, 
the lowest throughput occurs when 
compression is greatest. 

The GIF equivalent throughput, 
GIF Size PWC Time , has a much narrower range: 78.9 to 107.6 KB/sec for ccitt and pc 
respectively. This range is the performance break; a 200 MHz Intel Pentium client can 
expect better performance from PWC over slower connections and from GIF over faster 
connections. 

Table 10 shows in system performance for PWC, PNG, and GIF in an Internet 
browser environment. The times shown are for load and display of the palette image 
corpus. The first column shows local hard-drive performance under Netscape Navigator 
4.x and exposes some sort of problem with the Navigator PNG implementation. The 
second column shows local hard-drive performance under Microsoft Internet Explorer 
4.x. The last column shows IE performance over a 28.8Kbit/sec dialup connection. 

 PWC BZIP PNG GIF JPEG-LS
ccitt 7.2 10.2/3.7 5.9/1.1 3.1/2.3 7.3/6.5
pc 3.5 9.2/2.5 3.8/0.6 1.9/1.4 2.2/2.0
dither 6.5 6.8/2.6 2.4/0.5 2.0/1.1 2.0/1.7
lena 2.7 2.8/1.3 1.2/0.3 0.9/0.4 0.7/0.6
corpus 4.1 7.3/2.5 2.7/1.1 2.0/1.5 3.4/2.1
total 24.0 36.3/12.6 16.0/3.6 9.9/6.7 15.6/12.9

Table 8 
Compression Times (seconds) 

Group Decisions Dpp MulDiv 
ccitt 4,773,463 0.15 12%
pc 2,741,487 0.80 14%
corpus 2,934,234 0.50 12%
lena 2,551,683 9.74 17%
dither 7,378,002 9.85 20%

Table 9 
PWC Decision Counts 

Format Navigator Explorer 28.8Kb
GIF 2.5 2.0 2:03
PNG 6.0 2.0 1:51
PWC 3.5 4.0 1:13

Table 10 
In Browser Performance 
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7.1 Notes on Dictionary Compression 

In the author’s experience, the deflate compression mechanism used in PNG 
compresses images significantly better than the LZW method used in GIF. Decode speed 
for inflate is generally faster than LZW. Default encode speed is slower for deflate but 
can be sped up with parameter adjustment. At a given compression, deflate encodes about 
as fast as LZW. The “-3” setting of ZIP models LZW compression and speed fairly well. 

The PNG format also allows for a flexible predictive coding mechanism called 
“filters”[10]. For palette images, the best filter is typically no filter. To verify this general 
assumption,  the PNG compression parameter space was searched on the ccitt, pc, lena, 

and dither image groups of the 
previous section. The results 
are summarized in Table 11. 

For the three palette image 
groups, no filter produced the 
best compression. Placing the 
fewest restrictions on 
dictionary structure yielded 
the best compression for ccitt 
and pc. However, 

compression times worsened significantly and compression efficiency did not markedly 
improve. On the dither group, restricting the dictionary to smaller entries slightly 
improved compression and sped things up. 

Compression of lena sharply improved when using filters. The best result was 
achieved by adaptively selecting the optimal filter for each scanline (mode 5). Adaptation 
improved compression about 1.5% over exclusive use of the Paeth filter. The Paeth filter 
is similar to the LOCO-I predictor. 

8. Notes on the Experiments 

All compression times shown in the experiments were obtained on a 200 MHz Intel 
Processor running Microsoft Windows 95. The compression results for PWC2 were 
obtained using a slightly improved version of the coder described in the original PWC 
paper. The streaming PWC coder used in the experiments is available at 
http://www.netcelerate.com. PWC compression times were obtained using the “-flip” 
option of the coder. 

JBIG results were obtained using the JBIGKIT[11]. Bzip results were obtained using 
bzip2[12]. JPEG-LS results were obtained using the HP Labs LOCO-I 
implementation[13]. PNG and GIF file sizes were obtained using Paint Shop Pro[14]. 
PNG compression times were simulated using command line versions of Zip[15] and 
Unzip[16]. GIF compression times were simulated using a PC version of UNIX 
compress[17]. The PNGCRUSH[18] utility was used to search the PNG compression 
parameter space. The arial and fractal images were obtained from Nasir Memon.  

Group Size Delta Filter Level Time 
ccitt 394,888 5.7% 0 -9 27.8
pc 215,756 4.4% 0 -9 18.3
lena 150,626 32.5% 5 -4 3.5
dither 540,631 0.7% 0 -3 1.8

Table 11 
PNGCRUSH Results 
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9. Summary 

Streaming PWC significantly enhances the coding speed of two-pass PWC while 
almost completely retaining its compression efficiency. The key to the performance 
increase is an augmented model that reduces the average number of coded decisions. The 
new skip model makes coding speed largely proportional to image complexity.  

The skip model has general utility in decreasing the maximum skew seen by a 
statistical coder. The combination of the skip model with a low precision count based 
binary coder out-compresses JBIG on the CCITT black/white test documents and is faster 
as well. 
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