
 1

A Streaming Piecewise-Constant Model

Paul J. Ausbeck Jr.
Netcelerate Software, Inc.

74 Carlyn Ave
Campbell, CA 95008

paula@alumni.cse.ucsc.edu

Abstract

The piecewise-constant image model (PWC) is remarkably effective for compressing
palette images. This paper discloses a new streaming version of PWC that retains the
excellent compression efficiency of the original algorithm while dramatically enhancing
compression performance. Further, compression throughput is made more constant,
making it possible to code sparse images very quickly.

1. Introduction

The piecewise-constant image model[1] is a
remarkably effective method for compression
of palette images. PWC outperforms standard
techniques on all types of palette images, and is
particularly effective on images that exhibit
significant two-dimensional structure. This
year’s DCC call for papers* contains 17 images
of the type that has seen widespread use on the Internet. PWC compresses these image
exceptionally well and it was impossible to resist using them in an introductory
comparison. Table 1 shows the total byte count for all 17 images when uncompressed,
and when compressed with GIF, PNG, and PWC.

Although initially targeted as an Internet graphics delivery medium, PWC suffers from
two problems that limit its potential in interactive applications. The most important
limitation in original PWC (hereafter designated PWC2) is that is makes two separate
image passes. One pass establishes rectilinear domain connectivity and a second pass
establishes domain color.

The second drawback to PWC2 is that it is a completely unary method and must code
at least one binary decision for every image pixel. This puts a floor on compression time
that is proportional to image size, not image complexity. This is unacceptable in that
many palette images are quite sparse and code extremely fast with conventional methods.

This paper describes a new streaming version of PWC. Streaming is affected by
making two passes over each scanline instead of over the entire image. Compression
speed is enhanced by a new method for skipping over uniform portions of an image. The
skip mechanism simultaneously improves compression efficiency and eliminates high-
skew decision streams. The mechanism has general utility.

* http://www.cs.brandeis.edu/~dcc/

BMP GIF PNG PWC
251,986 25,542 19,733 8,275

Table 1
Compression of Images from the

1999 DCC Call for Papers

 2

2. Two-Pass PWC

The piecewise-constant image model composes an image from rectilinearly connected
domains each having a constant color. Boundaries between domains and domain colors
are described with binary decisions. The four types of decisions made when describing a
PWC model are shown in Table 2.

In the PWC2 coder, domain boundaries are established in a first image pass and
domain colors are established in a second pass. With the two pass technique, the color of
a domain need only be acquired once. For example, Figure 1 shows a fragment of the
JPEG-LS compound document #1. Even though the fragment contains only two colors, it

is embedded in a 256 color image precluding simple
color assumptions.

In the two-pass technique, the extent of concave
domains such as the ‘H” of Figure 1 is completely
defined in the first pass. When such a domain is
initially encountered in the second pass, its color is
established with decisions Q2-Q4 and then
completely propagated throughout the domain via a
flooding process.

3. Streaming PWC

The basic strategy of streaming PWC is to make two passes through each scanline.
The first pass makes Q1 decisions to establish rectilinear connectivity within the scanline
and to the previous scanline. The second pass determines the color of each domain stripe
by making Q2-Q4 decisions.

The requirements for the color determination pass are somewhat subtle. The key point
is to avoid making unnecessary color decisions. For example, once the color for the roof
of the “T” in Figure 1 is established on the first scanline it is possible to propagate the
color down the trunk without making further color decisions. Similarly, though the color
of the “H” must be determined twice on the first scanline, color propagation is possible
on subsequent scanlines. Perhaps not as obvious is that color propagation is also possible
for the cross of the “t”.

Streaming PWC maximizes color propagation by making two color determination
passes over each domain stripe. The first pass does not make any coded decisions. On the

Q1 Is the current pixel’s color identical to that of a
specified rectilinearly connected neighbor?

Q2 Is the current pixel’s color identical to that of a
specified diagonally–connected neighbor?

Q3 Is the current pixel’s color identical to a
guessed value?

Q4 What is the current pixel’s color?

Table 2
Piecewise–Constant Language

Figure 1
Excerpt from JPEG-LS

Compound Document #1

 3

second pass, the boundary model built by the connectivity pass is consulted to determine
whether or not a color can be propagated from the previous scanline. If a pixel on the
previous scanline is not separated from the current scanline by the boundary model, its
color becomes the propagation color. Colors lying above horizontal edges in the
boundary model are marked as impossible.

If color propagation is not possible, impossible color information is then used to filter
Q2 and Q3 decisions in a Q2-Q4 color determination sequence. The streaming algorithm
is summarized thusly:

 For each image scanline
 Make a first pass and make Q1 decisions to determine rectilinear connectivity.
 On a second color determination pass, for each domain stripe:

 Make a first pass to determine the possibility of color propagation and
mark impossible colors.

 If color propagation is not possible, determine the stripe color via a
Q2-Q4 sequence that skips impossible Q2 and Q3 decisions.

 Make a second pass along the stripe to update the color model.

4. Performance Considerations

Several performance enhancements make PWC significantly faster than PWC2. The
enhancements focus on reducing the number of coded decisions. A secondary
consideration is reducing the necessary precision in the statistical coder.

4.1 Connectivity Constraints

For conditioning Q1 decisions,
both PWC2 and PWC use the edge
model proposed by Tate[2]. At each
separator lattice location, L, a Q1
decision is made to determine the
presence or absence of a vertical
edge. Once the vertical edge state is
known, connectivity constraints
often deterministically determine the
horizontal edge state. To the extent
that determinism operates, the
number of decisions that must be
statistically coded is reduced.

The following analysis develops
an upper bound on the rectilinear
decision entropy. If p is the zero
order probability that a separator
lattice site is full, then the probability
that a horizontal separator is deterministically determined is:

D p p p p() () () 1 3 13 2 . (1)

0 0.5 1
0

0.5

1

D()p

p

Figure 2
Deterministic Decision Probability

 4

D p() is plotted in Figure 2.
Given p as before, the vertical decision entropy is:

H p p p p p1 2 21 1() log () () log () . (2)

The horizontal entropy adjusted for
determinism is:

H p D p H ph () (()) () 1 1 , (3)

and the total edge entropy is

H p H p H ph2 1() () () . (4)

The maximum of H2 is 1.607 and
it occurs at a full edge probability of
0.632. H2 is plotted in Figure 3. Note
how H2 approaches the single
decision entropy, H1 , at low p and
approaches 2 1H at high p . On
sparse images only one Q1 decision
need typically be made at each
separator lattice location.

4.2 Skipping Inactive Areas

One decision is better than two, but PWC2 must code at least one decision for every
image pixel even if the image is completely uniform. Since palette images often contain
large uniform areas that code very fast with conventional methods, streaming PWC
contains a new hybrid unary/run length model that accelerates coding of sparse images.

The surprisingly simple solution introduces a new decision to the PWC language. An
inactive location is defined as a location where the edge decision context model contains
no edges. During an edge scan when an inactive location is encountered, PWC makes a
decision that determines whether or not to skip to the next active location. The new
decision, designated Q0, is shown in Table 3. Q0 decisions are made under a special skip
context.

If a Q0 decision is made to the
affirmative, the algorithm skips forward to
the next active context and continues normal
processing. If a skip occurs, the edge model
need not be updated since the skipped
locations remain inactive. If a skip cannot be made, PWC temporarily disables skip
processing until the next edge is discovered through normal unary processing.

The skip mechanism actually yields better compression efficiency than the completely
unary model. The reasons for this are two fold. First, skip decisions are relatively
infrequent. And second, inactive edge decisions are now made in two contexts, the skip
context and the normal inactive context.

0 0.5 1
0

0.5

1

1.5

22

0

H 2()p

H 1()p

.2 H 1()p

10 p

Figure 3
Total Edge Map Decision Entropy

Q0 Skip to the next active location?

Table 3
New Skip Decision

 5

4.3 A Better Predictor for Q4

PWC2 uses a predictive model with multiple activity classes[3] for Q4. The three
closest causal pixels are used to select the activity class. The predictor used is the single
previous pixel on the same scanline. While this simple predictor works reasonably well
for typical palette image, it is unsatisfactory for grayscale images.

Many predictors that work well for grayscale images misbehave on typical palette
images. One predictor that performs well on both types of images is that used in LOCO-
I[4]. The LOCO-I predictor consists of a three pixel planar predictor augmented with a
simple edge detector.

Using this predictor, streaming PWC compresses grayscale images significantly better
than PWC2. Compression of typical palette images is also improved by approximately
0.5%. Better prediction also leads to slightly fewer statistically coded decisions and
somewhat improved performance.

4.4 Low Precision Arithmetic Coding

Both versions of PWC use Don Speck’s carry-free coder[5] for statistical coding of
binary decisions. This coder goes back to the roots of arithmetic coding to avoid IP issues
associated with more modern coders. Statistics are kept as counts and the coding interval
is split with a multiply/divide operation. Both versions of PWC augment the basic coder
with 3-4-5 adaptation where statistics are halved whenever the lps count reaches six.

The maximum count value used in PWC2 is 65,535. This is to accommodate the high
skew of the inactive edge decision context. With its skip model, streaming PWC can get
by with a maximum skew of 255. This allows for a 16 8 8 16 bit multiply/divide
operation and reduces the necessary Intel Pentium CPU cycles from 52 to 36.

The combination of the skip model with accurate coding of low skews also produces
excellent compression. In fact, as is shown in the experiments, the combination does
better than JBIG on the CCITT test documents. This is probably because state driven
arithmetic coders such as the QM code of JBIG exhibit small inefficiencies as decision
probability approaches 50%. Several recent efforts have focused on this problem[6],[7].

5. Depth One Model Optimization

The edge model is overkill for depth one images, and to attain reasonable speed
streaming PWC uses a 10 pixel neighborhood color model on two color images[8]. In the
reduced model, the inactive criteria becomes either uniformly white or uniformly black.
Statistics for the two “colors” of skip decisions are kept separately. On the CCITT test
documents, a white only inactive criteria yields better compression than the symmetric
criteria. This is because uniform black areas are relatively short.

In this environment, the skip information is mostly wasted. For example, if a uniform
black area is only one column wide, a negative skip decision determines that the next
pixel is white. The wasted information can be recaptured by making non-skipped color
decisions in more than one context. The base two logarithm of the remaining skip length
works well as a conditioning function.

 6

6. Experiments

The major new consideration for streaming PWC
is that the color of a concave domain may have to
be acquired multiple times. Intuition indicates that
reacquisition should occur relatively infrequently in
practice. To verify this assumption, it is instructive
to compare streaming PWC against the original
two-pass algorithm (PWC2) on the palette image
corpus. The results of Table 4 show the average
compression achieved by streaming PWC to be
only 0.6% worse than a slightly improved version
of PWC2.

The version of PWC2 used in this test does not
include all the improvements incorporated into
streaming PWC. In particular, streaming PWC
contains the skip mechanism, an improved
predictor, and improved tracking of impossible
colors. Nevertheless, the actual coding penalty for
color reacquisition is small. The author’s estimate is
somewhere between two and three percent for the
palette image corpus.

6.1 JBIG Comparison

The penultimate change in streaming PWC is the
ability to skip over inactive portions of each scanline. However the skip mechanism is
only responsible for about half of the performance gain seen in the last row of Table 4.
An initial version of the streaming coder without the skip mechanism requires 7.8

seconds to encode the palette image corpus.
Another data point of note in Table 4 is that

streaming PWC actually compresses CCITT
black/white reference document #1 better than
PWC2. In fact, over the entire set of eight CCITT
documents, PWC yields 3.3% better compression
than PWC2. Surprisingly, none of this difference is
due to the change from an edge model in PWC2 to a
pixel model in PWC. The improvement is due solely
to the skip mechanism!

As the results of Table 5 show, over the entire set
of eight CCITT documents, PWC is actually 1%
better than sequential JBIG. The reason is that the
skip mechanism obviates any need for the arithmetic
coder to handle high skews. The arithmetic coder in
PWC uses relatively low precision but its entire
precision is dedicated to accurately representing

relatively low skews.

Image PWC2 PWC
benjerry 2,387 2,473
books 8,630 8,719
ccitt01 12,890 12,685
cmpndn 40,390 40,354
cmpndu 53,951 53,725
flax 149 171
gate 15,530 15,671
music 735 721
netscape 10,649 10,839
pattern 1,174 1,096
sea_dusk 657 696
stone 4,001 3,982
sunset 52,341 53,173
winaw 11,440 11,700
yahoo 4,374 4,461
Total 219,218 220,466
Time 22.8 4.1

Table 4
Streaming vs Two-Pass PWC

CCITT# JBIG PWC
1 12,884 12,685
2 8,008 7,858
3 20,052 19,834
4 49,039 49,074
5 23,272 22,994
6 11,764 11,579
7 52,306 51,570
8 13,288 13,132
Total 190,613 188,726
Time 9.5 7.2

Table 5
CCITT Black/White Test

Documents

 7

Further, even though it uses a relatively slow arithmetic coder, PWC is 25% faster
than JBIG. Of course this is only true for images where one color predominates but this
condition is often met in practice. PWC is still relatively immature and it is likely that its
encode speed can be improved with a better implementation.

6.2 An Expanded Performance Comparison

Many of the images in the original PWC test corpus are quite small and are not very
suited for performance analysis. For this reason an expanded corpus was devised to better
map PWC performance. The expanded corpus, summarized in Table 6, contains five
image groups. Each group is designed to cover a specific performance regime.

Four high performance reference coding methods, bzip[9], PNG, GIF, and JPEG-LS,
were compared against PWC on the expanded corpus. Compression and performance
results are summarized in Table 7 and Table 8 respectively. Since bzip, PNG, and GIF
are assymetric, both encode and decode times are shown separated by a slash. Two
encode times are shown for JPEG_LS. The first time is measured elapsed time. The
second time is the compression time reported by the locoe program.

The compression results of Table 7 demonstrate that PWC operates well across a wide
variety of palette images. PWC achieves the best compression on every image group
excepting the grayscale representative, lena. Compression is respectable even on lena.

Even though PWC is a fairly complicated model, performance is quite reasonable
compared to other encoders. However, the extremely fast decode speed of the dictionary
methods appears to be unattainable by PWC-like methods.

Name Description
bw CCITT black and white facsimile documents 1-8
pc JPEG-LS test document pc reduced to one color component
dither Color reduced images with heavy dithering: arial and fractal
lena USC Lena 512x512 converted to grayscale
corpus Original PWC palette image corpus

Table 6
Performance Test Corpus

 PWC bzip PNG GIF JPEG-LS
ccitt 188,726 372,640 418,490 464,437 577,849
pc 104,033 198,723 225,936 376,482 361,570
dither 481,270 485,321 544,694 645,732 559,652
lena 162,478 173,645 223,051 230,921 138,883
corpus 220,426 288,363 323,290 376,208 415,734
total 1,156,933 1,518,692 1,735,461 2,093,780 2,053,688

Table 7
Compressed File Byte Counts

 8

PWC performance is
relatively poor on highly
dithered and grayscale images.
The reason is that PWC is
going through its entire
decision structure and gaining
only relatively modest
additional compression for each
decision. Table 9 shows
decision counts and decisions
per pixel (Dpp) for each of the
example image groups. On the dither group, PWC is actually making almost 1.25
decisions for each uncompressed image bit. Perhaps surprisingly, the amount of time
spent on the arithmetic multiply/divide operation never exceeds 20% of the total

compression time.
Even on the dither group, none of the

PWC decisions are entirely wasted. If
decisions Q0-Q3 are turned off, Dpp
drops to 8.5 but the total compressed file
size increases 22%. Compression time
decreases 43% and the percentage of time
spent on arithmetic multiply/divide
increases to 34%.

7. Analysis

PWC throughput ranges from 26.2 to
76.6 Kbytes/sec on the ccitt and dither
groups respectively. Average throughput
is probably close to that exhibited on the
corpus group: 54.2 KB/sec. Significantly,
the lowest throughput occurs when
compression is greatest.

The GIF equivalent throughput,
GIF Size PWC Time , has a much narrower range: 78.9 to 107.6 KB/sec for ccitt and pc
respectively. This range is the performance break; a 200 MHz Intel Pentium client can
expect better performance from PWC over slower connections and from GIF over faster
connections.

Table 10 shows in system performance for PWC, PNG, and GIF in an Internet
browser environment. The times shown are for load and display of the palette image
corpus. The first column shows local hard-drive performance under Netscape Navigator
4.x and exposes some sort of problem with the Navigator PNG implementation. The
second column shows local hard-drive performance under Microsoft Internet Explorer
4.x. The last column shows IE performance over a 28.8Kbit/sec dialup connection.

 PWC BZIP PNG GIF JPEG-LS
ccitt 7.2 10.2/3.7 5.9/1.1 3.1/2.3 7.3/6.5
pc 3.5 9.2/2.5 3.8/0.6 1.9/1.4 2.2/2.0
dither 6.5 6.8/2.6 2.4/0.5 2.0/1.1 2.0/1.7
lena 2.7 2.8/1.3 1.2/0.3 0.9/0.4 0.7/0.6
corpus 4.1 7.3/2.5 2.7/1.1 2.0/1.5 3.4/2.1
total 24.0 36.3/12.6 16.0/3.6 9.9/6.7 15.6/12.9

Table 8
Compression Times (seconds)

Group Decisions Dpp MulDiv
ccitt 4,773,463 0.15 12%
pc 2,741,487 0.80 14%
corpus 2,934,234 0.50 12%
lena 2,551,683 9.74 17%
dither 7,378,002 9.85 20%

Table 9
PWC Decision Counts

Format Navigator Explorer 28.8Kb
GIF 2.5 2.0 2:03
PNG 6.0 2.0 1:51
PWC 3.5 4.0 1:13

Table 10
In Browser Performance

 9

7.1 Notes on Dictionary Compression

In the author’s experience, the deflate compression mechanism used in PNG
compresses images significantly better than the LZW method used in GIF. Decode speed
for inflate is generally faster than LZW. Default encode speed is slower for deflate but
can be sped up with parameter adjustment. At a given compression, deflate encodes about
as fast as LZW. The “-3” setting of ZIP models LZW compression and speed fairly well.

The PNG format also allows for a flexible predictive coding mechanism called
“filters”[10]. For palette images, the best filter is typically no filter. To verify this general
assumption, the PNG compression parameter space was searched on the ccitt, pc, lena,

and dither image groups of the
previous section. The results
are summarized in Table 11.

For the three palette image
groups, no filter produced the
best compression. Placing the
fewest restrictions on
dictionary structure yielded
the best compression for ccitt
and pc. However,

compression times worsened significantly and compression efficiency did not markedly
improve. On the dither group, restricting the dictionary to smaller entries slightly
improved compression and sped things up.

Compression of lena sharply improved when using filters. The best result was
achieved by adaptively selecting the optimal filter for each scanline (mode 5). Adaptation
improved compression about 1.5% over exclusive use of the Paeth filter. The Paeth filter
is similar to the LOCO-I predictor.

8. Notes on the Experiments

All compression times shown in the experiments were obtained on a 200 MHz Intel
Processor running Microsoft Windows 95. The compression results for PWC2 were
obtained using a slightly improved version of the coder described in the original PWC
paper. The streaming PWC coder used in the experiments is available at
http://www.netcelerate.com. PWC compression times were obtained using the “-flip”
option of the coder.

JBIG results were obtained using the JBIGKIT[11]. Bzip results were obtained using
bzip2[12]. JPEG-LS results were obtained using the HP Labs LOCO-I
implementation[13]. PNG and GIF file sizes were obtained using Paint Shop Pro[14].
PNG compression times were simulated using command line versions of Zip[15] and
Unzip[16]. GIF compression times were simulated using a PC version of UNIX
compress[17]. The PNGCRUSH[18] utility was used to search the PNG compression
parameter space. The arial and fractal images were obtained from Nasir Memon.

Group Size Delta Filter Level Time
ccitt 394,888 5.7% 0 -9 27.8
pc 215,756 4.4% 0 -9 18.3
lena 150,626 32.5% 5 -4 3.5
dither 540,631 0.7% 0 -3 1.8

Table 11
PNGCRUSH Results

 10

9. Summary

Streaming PWC significantly enhances the coding speed of two-pass PWC while
almost completely retaining its compression efficiency. The key to the performance
increase is an augmented model that reduces the average number of coded decisions. The
new skip model makes coding speed largely proportional to image complexity.

The skip model has general utility in decreasing the maximum skew seen by a
statistical coder. The combination of the skip model with a low precision count based
binary coder out-compresses JBIG on the CCITT black/white test documents and is faster
as well.

10. References

[1] Paul J. Ausbeck Jr, “Context Models for Palette Images”, Proceedings Data

Compression Conference, March 1998, IEEE Press, Los Alamitos, California.

[2] Stephen R. Tate, “Lossless Compression of Region Edge Maps”, CS–1992–9,
Department of Computer Science, Duke University, Durham, NC, 1992.

[3] Don Speck, “Local Activity Level Classification Model for Continuous–tone
Coding”, document N198 submitted to ISO/IEC JTC1/SC29/WG1 June 29, 1995.

[4] Marcelo J. Weinberger, Gadiel Seroussi, and Guillermo Sapiro, “LOCO-I: A low
Complexity, Context-Based, Lossless Image Compression Algorithm”, Proceedings
Data Compression Conference, March 1996, IEEE Press, Los Alamitos, California.

[5] Don Speck, Carry-free arithmetic coder, personal communication, April, 1996.

[6] Don Speck, “Arithmetic coder combining the best compression with the best speed”,
ISO/IEC JTC1/SC29/WG1 submission, July 11, 1997.

[7] Lèon Bottou, Paul G. Howard, and Yoshua Bengio, “The Z-Coder Adaptive Binary
Coder”, Proceedings Data Compression Conference, March 1998, IEEE Press, Los
Alamitos, California.

[8] Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black–White Images
with Arithmetic Coding”, IEEE Transactions on Communications, Vol. COM–29(6),
pp. 858–867 (June 1981).

[9] M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data Compression
Algorithm”, SRC Research Report, Digital Systems Research Center, 130 Lytton
Avenue, Palo Alto, California 94301.

[10] PNG (Portable Network Graphics) Specification, http://www.w3.org/TR/REC-png.

[11] Markus Kuhn, Version 0.9 of the JBIG–KIT, available via anonymous ftp at
ftp.informatik.uni–erlangen.de/pub/doc/ISO/JBIG/jbigkit-0.8.tar.gz.

[12] Julian Seward, bzip2, http://www.muraroa.demon.co.uk

[13] HP Labs LOCO-I/JPEG-LS Home Page, http://www.hpl.hp.com/loco.

[14] Jasc, Inc., http://www.jasc.com.

[15] Mark Adler, Richard B. Wales, Jean-loup Gailly, Onno van der Linden and Kai Uwe
Rommel, Zip, http://www.cdrom.com/pub/infozip/Zip.html.

[16] Greg Roelofs, Unzip, http://www.cdrom.com/pub/infozip/UnZip.html.

[17] WinXs Unix Tools for Windows, available for download at the ZDNet Software
Library, http://www.hotfiles.com.

[18] Glenn Randers-Pehrson, pngcrush, http://www.netgsi.com/~glennrp/pngcrush.

