
The Piecewise-Constant Image Model

Paul J. Ausbeck Jr., Member IEEE

Abstract—The piecewise-constant image model (PWC) is a

new technique for lossless compression of palette images.
PWC is a blend of traditional scanline oriented and newer
object based methods. Remarkably, PWC delivers the best
known compression across a wide variety palette image types
while delivering translation speeds comparable to highly
tuned one dimensional methods. This paper introduces the
topic of palette image coding and traces the development of
the piecewise-constant model from a completely object
oriented code requiring two image passes to a high
performance scanline oriented code.

Index Terms—Lossless image compression, palette image
compression, PWC.

I. INTRODUCTION

A palette image is composed of two components: color
information contained in a lookup table or palette, and image
information composed of a series of palette indices. Palette
images are ubiquitous in modern computer systems. The user
interface elements of most windowing operating systems are
composed of palette images. Black and white documents are a
simple form of palette image. Almost every page on the
Worldwide Web contains one or more palette images. Figure 1 is
a grayscale version of the palette image serving as the banner of
the Web site http://www.yahoo.com in October of 1997.

Figure 1
A Typical Palette Image

In spite of their widespread use, a good model for palette
images has yet to be devised. Palette images generally contain too
few colors to make effective use of linear predictive models such
as used in JPEG–LS[1] and contain too many colors to avoid the
sparse context problem that arises when using neighborhood color
models such as those of JBIG[2]. Table 1 shows the results of
applying various coding methods to the grayscale image of Figure
1. The first method is to individually code the image bitplanes
with JBIG, the second method is JPEG-LS predictive coding, and
the last method is dictionary coding via GIF. Perhaps surprisingly,
the one dimensional model used in GIF performs better than either
of the alternate two dimensional models. For palette images that
have not been converted to grayscale, the superior performance of
dictionary coding methods continues to hold true.

Uncoded Bit Planes Predictive GIF
27,182 9,266 8,825 6,923

Table 1
Motivational Coding Example

The author is with Caravian Software Designs, 74 Carlyn Ave,

Campbell, CA 95008. He can be reached via electronic mail at:
paula@alumni.cse.ucsc.edu.

II. BACKGROUND

The CompuServe Graphics Interchange Format (GIF)1 is the
most commonly used file format for the distribution of palette
images. The compression algorithm used for GIF image data is
the LZC[3] improvement to the LZW[4] form of the LZ78[5]
universal dictionary compressor. LZC is particularly
straightforward to implement and is used in both GIF and the
UNIX “compress” utility.

Patent claims against the LZ78 class of algorithms were the
impetus for development of the relatively new Portable Network
Graphic (PNG) format. PNG compresses image data using the
DEFLATE[6] algorithm, a combination of LZ77[7] dictionary
compression and Huffman[8] coding. This combination is a
particularly effective adaptation strategy for palette images,
yielding compression significantly better than LZC. Also
introduced in PNG is the option of using a predictive “filter” as a
preprocessor to DEFLATE. While filters improve compression
significantly on natural images, they unfortunately degrade
compression of palette images.

The LZC algorithm is fairly symmetric, requiring slightly more
computation on encode than decode. DEFLATE is more flexible,
providing options for trading off compression and speed.
Interestingly, at comparable speeds both methods produce roughly
equivalent compression. An extended discussion of the relative
merits of the various forms of dictionary compression can be
found in Bell et al[9].

Since existing palette image standards are based upon universal
one-dimensional compression algorithms, there should be
significant room for improvement. One avenue of exploration is
an improved universal algorithm. The Burrows-Wheeler
Transformation[10] (BWT) has gained recent attention because it
provides compression comparable to sophisticated context models
at speeds closer to LZ methods. The best known BWT method is
the BZIP implementation of the method of Fenwick[11]. BZIP
performs a block sort transformation, followed by move to front
(MTF) coding, followed by zero order arithmetic entropy coding.
Interestingly, while MTF coding is useful for text, it may be less
so for images. Arnavut[12] has recently shown that removing
MTF from BZIP improves its compression of palette images.

One drawback of the BWT method is that optimal compression
is attained by sorting large blocks of data. This both requires large
amounts of memory and precludes standard image domain
techniques such as streaming or progressive transmission.
Secondly, it should be possible to achieve better compression
through the use of a proper two-dimensional image model.
Surprisingly, this second goal has been remarkably difficult to
achieve.

The two dominant lossless image coding techniques are linear
predictive coding as used in JPEG-LS and neighborhood context
modeling as used in JBIG. Predictive coding works well on
natural images where spatially adjacent pixels tend to have similar
values. Context modeling works well on black/white images
where the limited number of colors allows the use of a reasonably
sized neighborhood model. Since palette images lack both of these
properties, neither method is suitable.

1 June 1990, copyright by Compuserve Inc., available at various

locations on the internet.

One possible avenue for matching predictive codes to palette
images is to reorder the palette to increase the correlation of
spatial and value adjacency. Memon[13] has shown that palette
reordering significantly improves CALIC[14] compression of
palette images. Arithmetic CALIC is appropriate for use in this
role since it performs significantly better than JPEG-LS on the
uniform pixel runs that typically appear in palette images.

A standard technique used to apply JBIG style neighborhood
context models to grayscale images is to separately code each
bitplane as a black/white image. Because there may be significant
correlation between the planes, improved compression can be
achieved by using pixels from previous (inter) planes in the
context model for subsequent planes. The Embedded Image-
Domain Adaptive Compressor (EIDAC)[15] uses this approach to
produce an embedded description of “simple” grayscale images.
The original version of EIDAC uses a single pixel from each
available inter bitplane in the coding context for the current (intra)
plane. A second version[16] using multiple pixels from the
immediately preceding inter plane shows improved results.

Neither palette ordering combined with predictive coding nor
bitplane coding compress as well as the better universal methods
and a more customized approach is clearly in order. One such
approach is Runs of Adaptive Pixel Patterns[17] (RAPP). The
basic structure of RAPP is similar to a predictive coder with the
prediction being formed from the closest four causal neighbors. In
RAPP the prediction is always one of the neighboring values. A
neighborhood map coloring is used to form 15 contexts for
conditioning the prediction decision. Failed predictions fall into a
decision scheme where remaining unpredicted neighboring values
are considered. Finally, anomalous values are encoded.
Neighborhood decisions are made arithmetically, anomalous
information is encoded using DEFLATE.

RAPP has been combined with EIDAC-like methods in a
content-progressive representation of street maps[18]. Excellent
compression is achieved by making use of layered composition
information provided by map publishers. Instead of coding each
bitplane of a composite map image, each color of the map
composition is coded separately using inter and intra pixels in the
coding context. Since typical maps contain upwards of 15 colors,
this approach is computationally expensive. An acceleration
scheme codes only the most important map layers such as text and
street outlines individually. The residue formed by subtracting the
initial bitplanes from the final image is then coded using a
variation of RAPP.

As a replacement for current palette image coding practice,
none of the previously discussed methods has the appropriate
properties. Though it compresses better than LZ methods, the
BWT approach is computationally more expensive, requires much
more memory and precludes streaming or progressive
presentation. Even with palette ordering, standard predictive
models are really mismatched to the material. Bitplane techniques
are computationally expensive and require side information such
as composition information to achieve the best compression.
RAPP is not yet a complete method, requiring both context
conditioned arithmetic coding and dictionary compression. The
subject of this paper is a new palette image compression method
that is computationally efficient, has a scanline proportional
memory footprint, and provides the best known compression of a
wide variety of palette image material.

III. THE PIECEWISE CONSTANT MODEL

Whether synthetically produced or derived from continuous
tone pictures, palette images are distinguished by three
characteristics:

They tend to contain far fewer colors than pixels.
Pixels of the same color tend to be contiguous.
The color of a pixel is statistically related to surrounding

colors.

The original Piecewise-Constant Image Model (PWC)[19]
captures these characteristics with a two pass object-based model.
In a first image pass, boundaries between constant color pieces or
domains are established. A second pass then determines domain
colors. Remarkably, this object-based approach can also be
accomplished within a framework that differs little from a
standard scanline oriented image code. Further, performance can
be comparable to commercially mature one-dimensional methods.
The remainder of this paper traces PWC’s evolution in a way that
is hopefully insightful.

IV. OBJECT BASED CODING

An important objective in designing an object based model is
to assure that boundary and color information can be coded under
a common framework. The framework used by PWC is that of a
multiple context binary arithmetic coder. This framework was
selected for two reasons. First, composing the model from binary
decisions minimizes granularity and maximizes opportunity for
compression. Second, arithmetic coding can take the hard edges
off of a model, allowing it to be used effectively on a wider
variety of source material.

A. The PWC Language

The PWC coding language is composed of the four decisions
shown in Table 2. D1 decisions are used to establish the
boundaries between constant color domains. Decisions D2-D4 are
used to establish domain color.

D1 Is the current pixel’s color identical to that of a
specified rectilinearly connected neighbor?

D2 Is the current pixel’s color identical to that of a
specified diagonally–connected neighbor?

D3 Is the current pixel’s color identical to a guessed
value?

D4 What is the current pixel’s color?

Table 2
Piecewise–Constant Language

D1-D3 are naturally binary. To maintain compatibility with
PWC’s coding framework, D4 is accomplished through a
composition of binary decisions. The following discussion
describes how the PWC language is used in an object-based
model.

B. Boundary Coding

One way of viewing the constant color domains of a palette
image is as countries on a geographical map. In fact, one possible
way to code boundary information would be to recolor domains
using just enough colors to maintain different colors for adjacent
domains. Some images, such as black/white documents, require
only two colors. However, it has long been known that at least
four colors are necessary to color an arbitrary map2[20]. Figure 2
is an example of a very simple map that cannot be colored with
fewer than four colors.

2 Recently. (at least relatively) it has been proven that four colors are

sufficient.

Figure 2
The Simplest Four Color Map

Minimal map colorings can be difficult to obtain and as such
are not very useful for coding[21]. However, the chromaticity of a
map does give a proportional indication of how much information
is necessary to code it. A two-color map requires only one
decision at each pixel location: is the pixel black or white? A four
color map requires two decisions to choose among the four
possible colors. A desirable goal is to find a single representation
that can efficiently represent both types of map.

The edge map, introduced by Tilton[22], represents boundary
information via the introduction of imaginary edges between
pixels. Each pixel is assigned one vertical and one horizontal edge
in a separator lattice. In the edge map representation, binary
decisions can be naturally used to determine whether or not a
particular lattice site is full. The toy image of Figure 2 has twenty
two full lattice sites. The remainder are empty.

A remarkable property of edge maps is that connectivity
constraints prevent them from being arbitrarily populated. When
fully exploited, the connectivity property allows a boundary coder
to adapt to local chromaticity.

1. Connectivity Constraints

PWC populates its edge map boundary model in raster order.
At each pixel location, L, the state of vertical separator site is
determined first, followed by the horizontal site. Population
decisions are made using D1 decisions from the PWC language.
On Figure 3 the two rectilinear separator decisions are labeled
D1v and D1h respectively.

D1h

D1v

L

Figure 3

Connectivity Constraints

Due to connectivity constraints, D1h can often be made
deterministically. For example if none of the three causal edges
touching the left end of separator site D1h is full, then D1h is
deterministically empty. If only one of the causal edges is full,
then D1h is deterministically full.

Using the idea of deterministic decisions, an upper bound on
the maximum rectilinear decision entropy can be developed.
Given a zero order probability, p , that a separator lattice site is
full, the probability that a horizontal separator is deterministically
determined is:

D p p p p() () () 1 3 13 2 . (1)

D p() is plotted in Figure 4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D p()

p

Figure 4
Deterministic Decision Probability

Also, given identical p , the vertical decision entropy is:

H p p p p p1 2 21 1() log () () log () . (2)

The horizontal entropy adjusted for determinism is:

H p D p H pv2 1() (()) () , (3)

and the total edge entropy is:

H p H p H pT () () () 1 2 . (4)

0 0.5 1
0

0.5

1

1.5

2

H T p()

H 1 p()

2 H 1 p()

p

Figure 5
Total Edge Map Decision Entropy

The maximum of HT is 1.607 and it occurs at a full edge

probability of 0.632. HT is plotted in Figure 5. Note how HT

approaches the single decision entropy, H1 , at low p and

approaches 2 1H at high p . On sparse images only one D1

decision need typically be made at each pixel location.
A completely two color map has the additional connectivity

property that each separator lattice intersection can have only 0, 2,
or 4 adjoining edges. D p() therefore further simplifies:

D p p p p p p p() () () () 1 3 1 3 1 13 2 2 3 (5)

giving the expected result of complete determinism for D1h.

2. Edge Decision Context Models

For conditioning separator site population decisions, PWC uses
the edge model proposed by Tate[23] and shown in Figure 6. Tate
used a ternary alphabet in his work but as described previously
PWC uses two binary D1 decisions. Since the model for D1v has
eight elements and the model for D1h has nine, the total number
of contexts for conditioning D1 decisions is 768. Connectivity
constraints reduce the number of active contexts to 512.

L

C

Figure 6
Edge Context Model

C. Color Coding

For typical palette images, neighboring pixels do not have a
linear predictive relationship. Further, the sparse context problem
makes it prohibitive to keep track of complete neighborhood color
statistics. PWC avoids these problems and takes advantage of the
strengths of both methods through a novel multi-stage color
determination process.

When establishing the color of a domain, PWC first tries to
establish diagonal connectivity. Failing that, a more general
process called color guessing is attempted. Finally, when color
guessing fails, the color is established via predictive coding. A
predictive model is used for the final stage because some color
reduced natural images, especially those of predominantly one
tint, can exhibit significant correlation in spatial and value
adjacency.

1. Diagonal Connectivity

D2 decisions are used to establish diagonal connectivity in
PWC. Diagonal connectivity is only defined at lattice
intersections where there is no rectilinear connectivity. Figure 7
shows the two causal orientations of diagonal connectivity at a
lattice intersection, L, that has four impinging boundary segments.
Each potential diagonal connection requires one D2 decision. The
number of diagonal connections considered by the model drops
quite rapidly as the edge density decreases and is typically less
than 0.5 decisions per pixel.

L

C

L

C

Figure 7
Diagonal Contexts

Domain color is usually more important than domain shape in
conditioning D2 decisions. For this reason D2 decisions are only
made once the color to be propagated across an diagonal
connection is known. Connection orientation is also an important
conditioning criteria in many images. Using both orientation and
color in a context model for D2 decisions requires two model
parameters for every color used by an image. On Figure 7 the two

orientations are represented by the left and right glyphs and the
propagating color is labeled C.

2. Color Guessing

Given a causal color context, typically only one or a few
following colors predominate. This leads to the idea of using
previously determined colors in the same context as guesses. To
maintain one guess for each context of a 256 color first order
model, requires only 256 model parameters.

LC LC

CC

Figure 8
Guess Contexts

Color guessing, PWC language element D3, is designed to
model the neighboring color relationships in an image while using
a controlled number of model parameters. A guess is simply some
color that has occurred previously in the coding process. The size
of a guess model is proportional to DS where D is the palette
depth of the image and S is the number of neighboring colors
used in the model. To maintain a reasonably sized model, the
number of neighboring domain colors used to condition D3 must
be limited. For 256 color images it is usually only profitable to
include one neighboring color in the coding context. The left
glyph of Figure 8 shows a known pixel, C, used as a guess context
for the unknown pixel, L, to its east. The right glyph of the figure
shows three neighboring colors used as a guess context. The three
color configuration is normally only useful for palette images of
depth four (sixteen possible colors).

The exact size of a guess model is determined by the number
of guesses for which statistics are maintained. One possibility is to
maintain statistics for every possible color occurring in each
context. The size of this straightforward guess model is DS1 , no
different from a complete neighborhood color model. With such a
large model, many guesses are not very useful in determining
color. Compression suffers because of the large number of mostly
useless parameters to be learned. Coding speed suffers because a
large number of largely irrelevant decisions are made.

One way to solve both of these problems is to limit the number
of guesses maintained simultaneously by the model to some fixed
number. When limiting guesses, a mechanism is needed to
maintain only good guesses: guesses that are mostly correct. One
way to achieve this is through guess competition within a guess
pool.

The competitive mechanism used by PWC a least recently used
(LRU) chain. In this application a context is moved to the front of
the LRU any time its associated guess is correct. When a new
guess is added to the pool and the pool has reached its maximum
size, the guess at the end of the LRU chain is sacrificed. Figure 9
shows the guesses of a guess pool chained from lists determined
by a context identifier. The average number of guesses per context
is the size of the guess pool divided by the number of guess
contexts. It should be emphasized that the guess pool is global.
Competition occurs both between guesses in the same context and
guesses in other contexts.

GG

G

G

G

1

LRU

0

Figure 9
Guess Pool Structure

The complete guess pool operation is as follows:

When D4 decision is made, the result is added to the
head of the guess pool LRU and to the tail of the
appropriate decision context’s guess chain.

When a D3 decision is correct, its associated context is
moved to the head of its guess chain and to the head of
the guess pool LRU.

When the guess pool is full and a guess must be
sacrificed, it is removed from both its associated guess
chain and the end of the LRU.

The statistics of a D3 context are only updated when
they are actually used to make a decision. No attempt is
made to keep accurate conditional probabilities.

The statistics of a sacrificed D3 context are decayed and
kept as a prior for its new role.

Guesses that are known to be impossible from prior D1
and D2 decisions are ignored.

3. Guess Failures

When diagonal connectivity and color guessing both fail, PWC
makes D4 decisions to introduce innovative colors to its model.
Depending upon the number of colors in the image, two different
procedures are used for D4. When the number of colors is sixteen
or fewer, D4 is made using zero order color statistics. Because all
decisions must fit into PWC’s binary arithmetic coding
framework, color statistics are kept in a binary tree and each bit of
the coded symbol’s binary description is coded separately.

When the number of image colors is greater than sixteen, D4
decisions are made via predictive coding. The predictor used is
the hybrid planar/edge predictor of JPEG-LS[1]. Prediction
residuals are coded using Don Speck’s Activity Level
Classification Model[24]. ALCM uses Rice[25] mapping followed
by Golomb[26] coding. The Golomb parameter is selected using
the logarithm of the absolute maximum difference in the causal
neighborhood. Again in keeping with PWC’s coding framework,
each Rice-Golomb bit is coded individually.

D. Object PWC

The PWC language is used in an object-bases coder in two
image passes. In the first pass, boundaries between constant color
rectilinear domains are established via one or two D1 decisions at
each pixel location. In a second pass, domain colors are
established through a sequence of decisions D2-D4. The operation
is summarized as follows:

Scan the image in raster order and at each pixel location:
Populate the vertical separator site (D1).
Populate the horizontal separator site using connectivity

constraints or failing that by making a D1 decision.
Mark all pixel as uncolored.

Scan the image in raster order and color each uncolored
domain as it is encountered:
Determine if the topmost domain stripe can be

diagonally connected to an already colored pixel by
making zero, one or two D2 decisions.

Failing that, using a sequence of D3 decisions to
determine if the unknown color is in the guess pool.

Failing that, establish the domain color using D4.
Flood the uncolored domain with the established color.

V.SCANLINE ORIENTED CODING

The flooding process of object PWC is the only aspect of the
algorithm that is not raster local. Even though flooding always
commences from the “highest” pixel in a domain, it is not a
completely top down process. For domains that are concave on
their upper periphery, the flooding process must descend into the
body of the domain and then re-ascend into upper extremities. For
example, the “H” on Figure 10 is first encountered at the top of its
left vertical segment. In order to reach the top of the right vertical
segment, the flooding process must re-ascend from the connecting
horizontal segment.

Figure 10
Excerpt from JPEG-LS Compound Document #1

To convert object PWC to a single pass algorithm, the flooding
process must be altered to be entirely top down. One fortunate
characteristic of palette images is that upper concave domains are
relatively rare in practice. Further, when they do occur they often
have significant extent, so the cost of color acquisition relative to
shape description is relatively low. One exception is small-font
two-color text like that of Figure 10. However, in this context the
cost of color acquisition itself is relatively low. Taken together
these considerations lead to the idea of top down flooding
augmented with limited color reacquisition.

A. Streaming PWC

Instead of making two complete image passes as in object
PWC, the basic strategy of streaming PWC[27] is to make two
passes through each image scanline. The first pass makes D1
decisions to establish rectilinear connectivity within the scanline
and to the previous scanline. The second pass determines the color
of each domain stripe by either propagating the color from the
previous scanline or failing that by making decisions D2-D4.

The requirements for the color determination pass are
somewhat subtle. The key point is to avoid making unnecessary
color decisions. For example, once the color for the roof of the
“T” in Figure 10 is established on the first scanline the color can
be propagated down the trunk without making further color
decisions. Similarly, though the color of the “H” must be
determined twice on the first scanline, color propagation is
possible on subsequent scanlines. Perhaps not as obvious is that
color propagation is also possible for the cross of the “t”.

Color determination is accomplished via two passes over each
domain stripe. On the first pass, the boundary model built by the
connectivity pass is consulted to determine whether or not a color
can be propagated from the previous scanline. Propagation is
possible if at least one pixel on the previous scanline is not

separated from the current scanline stripe by horizontal separators
in the boundary model.

If color propagation is not possible, the stripe color is
determined via decisions D2-D4. The stripe is filled in a second
pass. The streaming algorithm is summarized thusly:

For each image scanline
Make a first pass and make D1 decisions to

determine rectilinear connectivity.
On a second pass, determine the color of each

domain stripe:
Make a first pass to determine the possibility of

color propagation.
If color propagation is not possible, determine

the stripe color via a D2-D4 sequence.
Make a second pass to update the color model.

VI. SPARSE IMAGE METHODS

Though significantly more efficient that object PWC,
streaming PWC suffers from a problem common to all
neighborhood context models: a disproportionate amount of
computational effort is spent encoding uniform image areas.
Because large uniform areas are quite common in palette images,
the average compression speed of streaming PWC is significantly
slower than competing one dimensional methods.

To ameliorate this problem a recent version of PWC uses a
new method called the skip-innovation model[28] to efficiently
blend two-dimensional modeling and run-length codes. The basic
idea is to skip over uniform areas entirely if possible, and to
partially skip them if not.

A. The Skip-Innovation Model

Sparse images often consist of a relatively large number of
features embedded in a smaller number of relatively uniform seas.
When a two-dimensional model is used to code such images,
acquisition of image features largely takes place in uniform
contexts and coding of previously acquired features largely takes
place in non-uniform contexts.

Figure 11
A Skip

To take advantage of this characteristic, a new decision is
introduced into the PWC coding model. When a uniform context
is encountered, its length is determined and a decision is coded as
to whether or not it can be skipped entirely. Runs that cannot be
skipped are coded in the normal unary fashion. For example, the
two black features on Figure 11 are separated by a run of seven
uniformly white coding contexts. Using the skip model this run is
coded as a single affirmative skip decision.

Figure 12
An Innovation

Skip failures are the result of new features needing introduction
to the model. The position of these new features, or innovations, is
the information that must be conveyed by the coder. The example
of Figure 12 shows an innovative feature located four pixels into a
contiguous context of length seven. In the skip-innovation model,
innovative locations are encoded with special binary codes.

B. Skip-Innovation Codes

Skip innovation codes are related to Golomb codes. The skip
decision, S, can be viewed as the magnitude or unary portion of
the code, the innovation, I, as the binary portion. The length of the
unary portion of the code is always one. The basic length of the
binary portion is the ceiling of the base two logarithm of S. As
with Golomb codes, the basic length of I can be significantly
reduced if S is not a power of two. The procedure used for
constructing skip-innovation codes is as follows:

Count the number, S, of uniform contexts that occur
before the next occurrence of a non-uniform context.

Counting no more than S, count the number of pixels, I,
to be coded whose value is identical to that populating
the coding context.

If I S , encode a one, otherwise encode a zero and:

Determine D S log ()2 , the number of binary digits

required for a maximal I.
Form a D digit binary representation of I.
For each digit of the binary representation of I starting

from the most significant:
Determine the minimum value, T, that would result

if that digit took on a value of one and previous
digits took on their previously encoded values.

If T S encode the digit.

SI codes for values of S and I up to seven are shown in Table
3.

I S=1 S=2 S=3 S=4 S=5 S=6 S=7
0 0 00 000 000 0000 0000 0000
1 1 01 001 001 0001 0001 0001
2 1 01 010 0010 0010 0010
3 1 011 0011 0011 0011
4 1 01 010 0100
5 1 011 0101
6 1 011
7 1

Table 3
Skip-Innovation Codes for S = 17

For m not equal to a power of two, Golomb assigned the
shorter binary sequences to shorter run lengths. Perhaps somewhat
counterintuitively, the shorter skip-interval codes are assigned to
longer runs. The first reason for this is obvious. The most frequent
value for I is S, representing the lack of innovation. The second
reason is more subtle.

Certain irregular or low slope features may be untrackable by a
reasonably sized context model. The smaller the context model,
the more likely a feature is to fall into this category of pseudo-
innovations. For example, on Figure 13 the pixel labeled with a
arrow is a pseudo-innovation. It is connected to a larger feature
already known by the model but the model is too small to make a
local determination. In this case, S is six and I is five resulting in
the SI code of 011, one bit shorter than the basic code length of
D 1 .

Figure 13
Pseudo-Innovation

Note that the SI code generation mechanism is extremely
simple and efficient. In fact, it was originally chosen just for these
properties. Only after several failed attempts at improvement was
it recognized that skewing the code distribution towards S was a
natural way to take advantage of the increased likelihood of
pseudo-innovations appearing near S.

C. SI Context Models

Since skip-interval codes are part the image model, adaptive
arithmetic coding can be used to further match them to the source
material. A convenient context for coding S is D, previously
calculated to determine the maximum possible number of binary
code digits. To the extent that skips of various sizes are not
uniformly distributed, using D as a context model for S can reduce
the overall code string length.

Often, multiple innovations are located in a failed skip. Due to
the structure of the SI codes, I will contain multiple leading zeros
when the distance between innovations is substantially less than
the skip length. The following context model can be used to
capture this structure:

Allocate one context for each bit of the maximum
possible skip length.

Designate one additional context the lumped context.
Initialize a variable, ONE_SEEN to zero.
From the most significant bit position of I to the lowest:

Code the bit under its positional context if
ONE_SEEN is zero and under the lumped context
otherwise.

If the coded bit is a one, set ONE_SEEN to one.

On black and white documents, the average black run often
differs substantially from the average white run. Therefore it is
useful to double number of contexts used for coding the SI bits.

D. Mixing SI Codes and Unary Codes

SI codes are designed for use as an alphabet extension
mechanism in line oriented image codes. Such extensions allow a
coder to switch between normal pixel at a time, or unary, coding
and run length coding. The SI mechanism differs from
conventional one-dimension run length coding in that it is
inherently embedded in a two-dimensional coding process. SI
never codes information in more than one context and therefore
does not lose any of the benefit of the two-dimensional model in
use.

The two-dimensional nature of SI creates one subtlety that may
not be immediately apparent. A typical one-dimensional run
length code, in addition to encoding a run of identical pixels, also
imparts some information about the pixel immediately following a
coded run. The additional information imparted is that the
following pixel is different from the coded run of pixels.

The SI mechanism is slightly different in that it only imparts
information about the following pixel when a skip failure has
occurred. The pixel immediately after a successful skip may or
may not be of the same color as the just skipped run. The follow

procedure shows how a decoder intermixes SI and unary codes on
a single image scanline:

For each pixel location on the scanline
If the current pixel’s coding context is non-uniform

Decode the pixel in the conventional unary
manner.

Advance the current pixel pointer one location.
Otherwise

Decode a skip-innovation code
If I S , skip forward S pixel locations filling

skipped pixels with the current color.
Otherwise:

Skip forward I locations filling skipped
pixels with the current color.

Fill the current pixel using the information
that it is different from the current color.

Advance the current pixel pointer by one.

VII. ARITHMETIC CODING

The binary arithmetic coder used in PWC is the carry-free
coder[29] written by Don Speck. The carry-free coder goes back
to the roots of arithmetic coding to avoid IP issues associated with
more modern techniques. Statistics are kept as counts and the
coding interval is split with a multiply/divide operation. For all
decisions other than D4, PWC augments the basic coder with 4-5-
6-7 adaptation where statistics are halved whenever the least
probable symbol count reaches eight. For D4, statistics are only
halved when the maximum count value is attained.

Because the skip-innovation model eliminates the need for the
arithmetic coder to accommodate large symbol skews, the
maximum count value used in PWC is 255. This allows for a
16 8 8 16 bit multiply/divide operation which can be
performed relatively quickly on modern CPU’s. As a further
refinement, the most recent version of PWC approximates the
arithmetic multiply/divide operation with a table lookup and
multiply. Since the precision of the counts is only eight bits, the
lookup table requires 64KB of memory.

VIII.THE PWC CODEC

The PWC codec uses four different models depending upon the
characteristics of the source material. The first model is tailored
for two color images, the second for images up to 16 colors, the
third for color images up to 256 colors, and the last for grayscale
images up to 256 colors. In the B/W model the default JBIG ten
color model is used for D1. In the 16 color model, the nine edge
model is used for D1, D2 is not made, and the three neighbor
model is used for D3. The 256 color model uses the nine edge
model for D1, the orientation/diagonal color model for D2, and
the single color model for D3. The grayscale model does not make
D1–D3 decisions. The number of model parameters is
summarized in Table 4.

Palette Model Parameters
Depth D1 D2 D3 D4
1 1024 0 0 0
4 512 0 256 16
8 512 512 1024 760
8-gray 0 0 0 760

Table 4
Model Parameters

The number of SI contexts is 2 1 12(log ())W , where W is

the image width. Half of the contexts are used to condition S and
half for I. In the black/white model, the number of SI contexts is
doubled.

IX.EXPERIMENTS

A. The PWC Corpus

During the initial development of PWC, a group of images
intended to serve as a benchmark palette image corpus was
assembled. The PWC corpus contains completely synthetic
images, nearest color quantized images, quantized images with
error diffusion, and compound images containing both synthetic
and natural elements. An attempt was made to balance the number
of bits of each source type. Some particular emphasis was placed
on obtaining palette images from popular sites on the World-Wide
Web. The last image in the corpus, yahoo, is shown in grayscale
form in Figure 1.

Image GIF PNG bzip2 BW-MTF
benjerry 4,401 4,571 3,896 3,412
books 11,177 10,831 10,310 9,396
ccitt01 38,862 28,910 24,809 23,412
cmpndn 62,682 56,397 59,324 57,210
cmpndu 76,759 69,438 49,146 45,878
flax 846 318 273 460
gate 23,313 20,124 18,344 16,991
music 1,987 1,647 1,729 1,606
netscape 17,442 15,879 13,842 12,591
pattern 1,782 1,928 1,537 1,375
sea_dusk 6,362 2,540 1,886 2,230
stone 4,753 3,906 4,028 4,361
sunset 100,186 81,794 76,743 64,783
winaw 18,559 18,732 16,155 14,995
yahoo 7,097 6,275 6,212 5,670
Total 376,208 323,290 288,234 264,370
Time 2.0/1.5 2.7/1.1 7.7/2.6 —3

Table 5
One Dimensional Methods on the Palette Image Corpus

Table 5 shows the results of applying various one-dimensional
compression methods to the PWC corpus. PNG compresses better
than GIF but both are outperformed by bzip2. The column labeled
BW-MTF is bzip2 without move to front coding.

Table 6 shows the results of several two-dimensional methods
applied to the PWC corpus. The first column is CALIC
augmented with palette ordering, the second column is the second
version of EIDAC, and the last column is RAPP. RAPP is the
only one of these methods designed expressly for palette images
and it is the only one that compresses better than bzip2.

3 Unknown but probably better than bzip2.

Image CALICO EIDAC RAPP
benjerry 4,193 2787 2,768
books 14,033 8742 9,634
ccitt01 18,146 15861 15,895
cmpndn 56,951 60033 63,605
cmpndu 71,109 47582 46,520
flax 379 90 124
gate 20,555 17891 17,340
music 1,648 955 831
netscape 14,302 11697 12,127
pattern 1,755 1123 1,315
seadusk 1,446 1208 787
stone 8,440 4064 4,665
sunset 113,710 92288 62,695
winaw 21,686 13384 13,662
yahoo 6,884 5079 4,897
Total 355,237 282,784 256,865
Time —4 43.45 30/31

Table 6
Two Dimensional Methods

Table 7 shows compression results from three different
versions of PWC. PWC-O is object PWC, PWC-S is streaming
PWC and PWC-SI is streaming PWC plus SI codes. Encode and
decode times are symmetric so only one timing result is shown for
each method. Color reacquisition accounts for the slightly worse
compression performance of PWC-S relative to PWC-O.
Interestingly, PWC-SI recaptures this loss and more. This result
not yet fully developed and is the topic of a future paper.

Image PWC-O PWC-S PWC-SI
benjerry 2,387 2,418 2,399
books 8,630 8,616 8,153
ccitt01 12,890 12,881 12,683
cmpndn 40,390 54,780 53,021
cmpndu 53,951 40,917 39,556
flax 149 107 142
gate 15,530 15,784 15,282
music 735 755 696
netscape 10,649 10,786 10,533
pattern 1,174 1,178 1,099
seadusk 657 646 678
stone 4,001 4,268 3,637
sunset 52,341 52,923 51,623
winaw 11,440 11,459 10,853
yahoo 4,374 4,443 4,350
Total 219,218 221,961 214,705
Time 22.8 8.0 2.4

Table 7
Improving PWC Performance

Table 8 shows in system performance of PWC, PNG, and GIF
in an Internet browser environment. The first column shows local
hard-drive performance under Netscape Navigator 4.5. The
second column shows local hard-drive performance under
Microsoft Internet Explorer 4.01. The last column shows IE
performance over a 28.8Kbit/sec dialup connection.

4 Too cumbersome to measure, but substantial.
5 Timed on a 360MHz SUN SPARC Ultra 5.

Format Navigator Explorer 28.8Kb
GIF 2.5 2.0 2:03
PNG 6.0 2.0 1:51
PWC 2.5 2.0 1:13

Table 8
In-Browser Performance

B. An Expanded Palette Image Corpus

The PWC corpus is designed for benchmarking the average
behavior of palette image algorithms. It is less useful for focusing
on various palette image subclasses. Therefore an expanded
corpus was assembled to better map the characteristics of the
higher performance methods.

The expanded corpus of Table 9 contains five image groups,
each designed to cover a specific performance regime. The
CCITT fax documents represent the class of two-color images.
Representing images with relatively few colors is the JPEG-LS
test image, pc. The third group is the PWC corpus, representing
images with an average number of colors. The dither group
contains two highly dithered images with a full color complement
that also retain some residual predictive structure in the palette6.
The last group is the well known grayscale image of lena.

 PWC-SI bzip2 PNG GIF JPEG-LS

ccitt 186,513 372,640 418,490 464,437 577,849

pc 98,831 198,723 225,936 376,482 361,570

corpus 214,705 288,363 323,290 376,208 415,734

dither 477,564 485,321 544,694 645,732 559,652

lena 141,944 173,645 223,051 230,921 138,883

Total 1,119,557 1,518,692 1,735,461 2,093,780 2,053,688

Time 12.5 36.3/12.6 16.0/3.6 9.9/6.7 15.6/12.9

Table 9
Expanded Corpus Results

The four highest performance reference coding methods, bzip,
PNG, GIF, and JPEG-LS, were compared against PWC-SI on the
expanded corpus. In the table bzip, PNG, and GIF encode and
decode times are shown separated by a slash. Two encode times
are shown for JPEG-LS. The first is compression time elapsed.
The second is time reported by the program.

PWC is the only method that is robust across all the image
classes. PWC operates similarly to JBIG on b/w images and to
JPEG-LS on predictive material. It blends smoothly between the
two and even does well on images that can perhaps be better
described with a one dimensional model.

C. The SI Mechanism

In PWC, SI codes are used within an arithmetic coding
framework. However, because it cleanly separates one and two
dimensional modeling, SI may have general utility as a model
blending tool. Table 10 uses the CCITT Fax documents to show
how SI can be effectively used in both arithmetic and non-
arithmetic coding frameworks.

6 Obtained from Nasir Memon.

ccitt# SI JBIG JPEG-LS SI-jls
1 12,675 12,788 35,840 21,829
2 7,726 7,938 30,439 13,221
3 19,494 19,950 71,211 40,110
4 48,461 48,942 126,450 84,595
5 22,647 23,187 73,769 42,589
6 11,493 11,689 51,664 24,983
7 51,085 52,227 133,423 77,349
8 12,932 13,220 55,053 25,152
Total 186,513 189,941 577,849 329,828
Time 3.3 9.5 7.3 2.5

Table 10
CCITT Fax Reference Documents

Columns PWC-SI and JBIG of Table 10 are PWC-SI and
sequential JBIG respectively. Remarkably, PWC-SI compression
is almost 2% better than JBIG. This despite the fact that the JBIG
probability estimator is tuned for these images The source of
PWC-SI’s improvement is that by using SI, more contexts are
available for modeling uniform image areas.

The speed up achieved by PWC-SI over JBIG (with typical
prediction) is ~3:1. To the author’s knowledge this is the highest
performance arithmetic result on the CCITT documents yet
published.

The final two columns of Table 10 compare JPEG-LS and a
matched non-arithmetic SI variant. The results show that for
structured material SI is a more robust alphabet extension
mechanism than the block-Melcode of JPEG-LS. The reason is
that once in run mode JPEG-LS pays no attention to the
surrounding context. This results in context mixing and loss of
compression efficiency. The SI mechanism differs from
conventional one-dimension run length coding in that it is
inherently embedded in a two-dimensional coding process. SI
never codes information in more than one context and therefore
does not lose any of the benefit of the encompassing two-
dimensional model.

D. Dynamically Created Content

Because the PWC-SI model is symmetric it lends itself to
compression of dynamically created content of the type
commonly used on the Internet. Such content is often synthetic or
composite and as such is often both sparse and highly structured.
Examples of such material include charts, figures, maps, clip art,
page backgrounds, and user-interface elements.

Metric PNG PWC
Comp. Bytes 33,614 13,558
Comp. Rate 29.2:1 72.4:1
Encode (sec) 1.1 0.6
Decode (sec) 0.6 0.6
Enc/Dec (sec) 1.7 1.2

Table 11
Dynamic Content Examples

In Table 11 an example from each of these classes was
compressed using PWC-SI and PNG, its closest competitor in
terms of compression rate and efficiency. PWC-SI’s compression
rate is about two and a half times better than that of PNG.
Remarkably, PWC-SI matches PNG’s extremely fast decode
speed on encode as well.

E. Experimental Notes

All compression times were obtained using a 200 MHz Intel
Processor running Microsoft Windows. The SI augmented PWC
codec and browser plugins for the two major internet browsers are
available at http://www.caravian.com. The SI-jls codec and older
veisions of PWC are obtainable via email request from the author.
PWC compression times were obtained using the “-flip” option of
the codec.

JBIG results were obtained using the JBIGKIT[30]. JPEG-LS
results were obtained using the HP Labs LOCO-I
implementation[31]. BWT results were obtained using bzip2[32].

Unless otherwise noted,. all times are time elapsed. GIF
compression times were simulated using compress[33], and PNG
compression times were simulated using command line versions
of zip[34] and unzip[35].

CALICO, EIDAC, and RAPP results were obtained using
programs obtained from their respective authors. Ziya Arnavut
supplied the BWT-MTF data.

X.SUMMARY

From its object based inception, PWC has exhibited the best
known lossless compression of palette images. Over time it has
evolved into a high performance scanline oriented code that
handles image structure particularly well. Since it is symmetrical
PWC may find its best use in compression of dynamically created
synthetic content.

PWC has also introduced a new philosophy for using binary
arithmetic coding to blend widely disparate image models. Along
this line several new ideas have been introduced including context
competition and SI run-length codes. PWC’s development has
opened many avenues for further investigation and it promises to
improve further in the future.

XI.REFERENCES

[1] M. Weinberger, G. Seroussi, G. Sapiro, and M. W. Marcellin, “The

LOCO-I Lossless Image Compression Algorithm: Principles and
Standardization into JPEG-LS,” HPL98-193, HP Labs, 1998.

[2] JBIG, “Progressive Bi-level Image compression”, International Standard
ISO/IEC 11544, ITU-T Recommendation T.82, 1993.

[3] S. W. Thomas, J. McKie, S. Davies, K. Turkowski, J. A. Woods, and J.
W. Orost “Compress (version 4.0) program and documentation,” 1985.

[4] T.A Welch., “A Technique for High-performance Data Compression,”
Computer 17(6) pp. 8-19, June 1984.

[5] J. Ziv and A. Lempel, “Compression of Individual Sequences via
Variable-Rate Coding,” IEEE Transactions on Information Theory,
24(5) pp. 530-536, September 1978.

[6] Peter Deutsch, “DEFLATE Compressed Data Format Specification,”
rfc1951, http://www.cis.ohio-state.edu/htbin/rfc/rfc1951.html, May
1996,

[7] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3) pp.
337-343, May 1977.

[8] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, 40(9) pp. 1098-1101, September 1952.

[9] Timothy C. Bell, John G. Cleary, and Ian H. Witten, Text Compression,
Prentice Hall, Englewood Cliffs, NJ, 1990.

[10] M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data
Compression Algorithm”, SRC Research Report, Digital Systems
Research Center, 130 Lytton Avenue, Palo Alto, California 94301.

[11] Peter Fenwick, “The Burrows-Wheeler Transform for Block Sorting
Text Compression: Principles and Improvements,” The Computer
Journal, 39(9), September 1996.

[12] Ziya Arnavut and Hasan H. Otu, “Lossless Compression of

Compound and Psuedo-Color Images with Burrows-Wheeler
Transformation,” publication pending.

[13] N. D. Memon and A. Venkateswaran, “On Ordering Color Maps for
Lossless Predictive Coding,” IEEE Transactions on Image Processing,
5(11) pp. 1522-1527, November 1996.

[14] Xiaolin Wu, “An Algorithmic Study on Lossless Image Compression,”
Proc. Data Compression Conference, March 1996.

[15] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded Image-Domain
Adaptive Compression of Simple Images,” 32nd Asilomar Conference
on Signals, Systems and Computers, November 1998.

[16] Y. Yoo, Y. Kwon, and A. Ortega, “Embeded Image Domain
Compression,” International Conference on Image Processing, Kobe,
Japan, Oct.1999.

[17] Viresh Ratnakar, “RAPP: Lossless Image Compression with Runs of
Adaptive Pixel Patterns,” 32nd Asilomar Conference on Signals,
Systems and Computers, pp. 1251-1255, November 1998.

[18] O.R. Jensen and S. Forchhammer, "Content Progressive Coding of
Limited Bits/Pixel Images," Proc. 3rd IEEE Workshop on Multimedia
Sig. Processing, pp. 419-424, Elsinore, Denmark, 1999.

[19] Paul J. Ausbeck Jr, “Context Models for Palette Images,” Proceedings
Data Compression Conference, March 1998.

[20] K. Appel and W. Haken, “Every planar map is four colorable,” Illinois
J. Mathematics, Vol. 21, pp. 429-567, 1977.

[21] Paul J. Ausbeck Jr., “Image Partition Boundary Coding,” Applications
of Digital Image Processing XXI, SPIE, July 1998.

[22] D. A. Novik and J. C. Tilton, “Adjustable Lossless Image
Compression Based on a Natural Splitting of an Image into Drawing,
Shading, and Fine-Grained Components,” Space and Earth Science
Data Compression Workshop, 1992.

[23] Stephen R. Tate, “Lossless Compression of Region Edge Maps,” CS–
1992–9, Computer Science Deptartment., Duke University, Durham,
NC, 1992.

[24] Don Speck, “Local Activity Level Classification Model for
Continuous–tone Coding”, Document N198, Submitted to ISO/IEC
JTC1/SC29/WG1, June 1995.

[25] Robert F. Rice, “Lossless Coding Standards for Space Data Systems,”
Thirtieth Asilomar Conference on Signals, Systems and Computers,
pp. 577-585, November 1996.

[26] S. W. Golomb, “Run-Length Encodings,” IEEE Transactions on
Information Theory, Vol. IT-12, pp. 399-401, July 1966.

[27] Paul J. Ausbeck Jr., “A Streaming Piecewise-Constant Model”,
Proceedings Data Compression Conference, March 1999.

[28] Paul J. Ausbeck Jr., “The Skip-Innovation Model for Sparse Images,”
Proceedings Data Compression Conference, March 2000.

[29] Don Speck, Carry-free Arithmetic Coder, personal communication,
April, 1996.

[30] Markus Kuhn, JBIG-KIT, Version 0.9, available at ftp.informatik.uni–
erlangen.de/pub/doc/ISO/JBIG.

[31] HP Labs, LOCO-I/JPEG-LS Page, http://www.hpl.hp.com/loco.

[32] Julian Seward, bzip2, http://sourceware.cygnus.com/bzip2/.

[33] WinXs Unix Tools for Windows, available at the ZDNet Software
Library, http://www.hotfiles.com.

[34] Mark Adler, Richard B. Wales, Jean-loup Gailly, Onno van der Linden
and Kai Uwe Rommel, Zip, http://www.cdrom.com/.

[35] Greg Roelofs, Unzip, http://www.cdrom.com/pub/infozip/.

