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Abstract—The piecewise-constant image model (PWC) is a 

new technique for lossless compression of palette images. 
PWC is a blend of traditional scanline oriented and newer 
object based methods. Remarkably, PWC delivers the best 
known compression across a wide variety palette image types 
while delivering translation speeds comparable to highly 
tuned one dimensional methods. This paper introduces the 
topic of palette image coding and traces the development of 
the piecewise-constant model from a completely object 
oriented code requiring two image passes to a high 
performance scanline oriented code. 

Index Terms—Lossless image compression, palette image 
compression, PWC. 

I.  INTRODUCTION 

A palette image is composed of two components: color 
information contained in a lookup table or palette, and image 
information composed of a series of palette indices. Palette 
images are ubiquitous in modern computer systems. The user 
interface elements of most windowing operating systems are 
composed of palette images. Black and white documents are a 
simple form of palette image. Almost every page on the 
Worldwide Web contains one or more palette images. Figure 1 is 
a grayscale version of the palette image serving as the banner of 
the Web site http://www.yahoo.com in October of 1997. 

 

Figure 1 
A Typical Palette Image 

In spite of their widespread use, a good model for palette 
images has yet to be devised. Palette images generally contain too 
few colors to make effective use of linear predictive models such 
as used in JPEG–LS[1] and contain too many colors to avoid the 
sparse context problem that arises when using neighborhood color 
models such as those of JBIG[2]. Table 1 shows the results of 
applying various coding methods to the grayscale image of Figure 
1. The first method is to individually code the image bitplanes 
with JBIG, the second method is JPEG-LS predictive coding, and 
the last method is dictionary coding via GIF. Perhaps surprisingly, 
the one dimensional model used in GIF performs better than either 
of the alternate two dimensional models. For palette images that 
have not been converted to grayscale, the superior performance of 
dictionary coding methods continues to hold true. 

Uncoded Bit Planes Predictive GIF 
27,182 9,266 8,825 6,923 

Table 1 
Motivational Coding Example 
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II.  BACKGROUND 

The CompuServe Graphics Interchange Format (GIF)1 is the 
most commonly used file format for the distribution of palette 
images. The compression algorithm used for  GIF image data is 
the LZC[3] improvement to the LZW[4] form of the LZ78[5] 
universal dictionary compressor. LZC is particularly 
straightforward to implement and is used in both GIF and the 
UNIX “compress” utility. 

Patent claims against the LZ78 class of algorithms were the 
impetus for development of the relatively new Portable Network 
Graphic (PNG) format. PNG compresses image data using the 
DEFLATE[6] algorithm, a combination of LZ77[7] dictionary 
compression and Huffman[8] coding. This combination is a 
particularly effective adaptation strategy for palette images, 
yielding compression significantly better than LZC. Also 
introduced in PNG is the option of using a predictive “filter” as a 
preprocessor to DEFLATE. While filters improve compression 
significantly on natural images, they unfortunately degrade 
compression of palette images. 

The LZC algorithm is fairly symmetric, requiring slightly more 
computation on encode than decode. DEFLATE is more flexible, 
providing options for trading off compression and speed. 
Interestingly, at comparable speeds both methods produce roughly 
equivalent compression. An extended discussion of the relative 
merits of the various forms of dictionary compression can be 
found in Bell et al[9]. 

Since existing palette image standards are based upon universal 
one-dimensional compression algorithms, there should be 
significant room for improvement. One avenue of exploration is 
an improved universal algorithm. The Burrows-Wheeler 
Transformation[10] (BWT) has gained recent attention because it 
provides compression comparable to sophisticated context models 
at speeds closer to LZ methods. The best known BWT method is 
the BZIP implementation of the method of Fenwick[11]. BZIP 
performs a block sort transformation, followed by move to front 
(MTF) coding, followed by zero order arithmetic entropy coding. 
Interestingly, while MTF coding is useful for text, it may be less 
so for images. Arnavut[12] has recently shown that removing 
MTF from BZIP improves its compression of palette images. 

One drawback of the BWT method is that optimal compression 
is attained by sorting large blocks of data. This both requires large 
amounts of memory and precludes standard image domain 
techniques such as streaming or progressive transmission. 
Secondly, it should be possible to achieve better compression 
through the use of a proper two-dimensional image model. 
Surprisingly, this second goal has been remarkably difficult to 
achieve. 

The two dominant lossless image coding techniques are linear 
predictive coding as used in JPEG-LS and neighborhood context 
modeling as used in JBIG. Predictive coding works well on 
natural images where spatially adjacent pixels tend to have similar 
values. Context modeling works well on black/white images 
where the limited number of colors allows the use of a reasonably 
sized neighborhood model. Since palette images lack both of these 
properties, neither method is suitable. 
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One possible avenue for matching predictive codes to palette 
images is to reorder the palette to increase the correlation of 
spatial and value adjacency. Memon[13] has shown that palette 
reordering significantly improves CALIC[14] compression of 
palette images. Arithmetic CALIC is appropriate for use in this 
role since it performs significantly better than JPEG-LS on the 
uniform pixel runs that typically appear in palette images.  

A standard technique used to apply JBIG style neighborhood 
context models to grayscale images is to separately code each 
bitplane as a black/white image. Because there may be significant 
correlation between the planes, improved compression can be 
achieved by using pixels from previous (inter) planes in the 
context model for subsequent planes. The Embedded Image-
Domain Adaptive Compressor (EIDAC)[15] uses this approach to 
produce an embedded description of “simple” grayscale images. 
The original version of EIDAC uses a single pixel from each 
available inter bitplane in the coding context for the current (intra) 
plane. A second version[16] using multiple pixels from the 
immediately preceding inter plane shows improved results. 

Neither palette ordering combined with predictive coding nor 
bitplane coding compress as well as the better universal methods 
and a more customized approach is clearly in order. One such 
approach is Runs of Adaptive Pixel Patterns[17] (RAPP). The 
basic structure of RAPP is similar to a predictive coder with the 
prediction being formed from the closest four causal neighbors. In 
RAPP the prediction is always one of the neighboring values. A 
neighborhood map coloring is used to form 15 contexts for 
conditioning the prediction decision. Failed predictions fall into a 
decision scheme where remaining unpredicted neighboring values 
are considered. Finally, anomalous values are encoded. 
Neighborhood decisions are made arithmetically, anomalous 
information is encoded using DEFLATE. 

RAPP has been combined with EIDAC-like methods in a 
content-progressive representation of street maps[18]. Excellent 
compression is achieved by making use of layered composition 
information provided by map publishers. Instead of coding each 
bitplane of a composite map image, each color of the map 
composition is coded separately using inter and intra pixels in the 
coding context. Since typical maps contain upwards of 15 colors, 
this approach is computationally expensive. An acceleration 
scheme codes only the most important map layers such as text and 
street outlines individually. The residue formed by subtracting the 
initial bitplanes from the final image is then coded using a 
variation of RAPP. 

As a replacement for current palette image coding practice, 
none of the previously discussed methods has the appropriate 
properties. Though it compresses better than LZ methods, the 
BWT approach is computationally more expensive, requires much 
more memory and precludes streaming or progressive 
presentation. Even with palette ordering, standard predictive 
models are really mismatched to the material. Bitplane techniques 
are computationally expensive and require side information such 
as composition information to achieve the best compression. 
RAPP is not yet a complete method, requiring both context 
conditioned arithmetic coding and dictionary compression. The 
subject of this paper is  a new palette image compression method 
that is computationally efficient, has a scanline proportional 
memory footprint, and provides the best known compression of a 
wide variety of palette image material. 

III.  THE PIECEWISE CONSTANT MODEL 

Whether synthetically produced or derived from continuous 
tone pictures, palette images are distinguished by three 
characteristics: 

They tend to contain far fewer colors than pixels. 
Pixels of the same color tend to be contiguous. 
The color of a pixel is statistically related to surrounding 

colors. 

The original Piecewise-Constant Image Model (PWC)[19] 
captures these characteristics with a two pass object-based model. 
In a first image pass, boundaries between constant color pieces or 
domains are established. A second pass then determines domain 
colors. Remarkably, this object-based approach can also be 
accomplished within a framework that differs little from a 
standard scanline oriented image code. Further, performance can 
be comparable to commercially mature one-dimensional methods. 
The remainder of this paper traces PWC’s evolution in a way that 
is hopefully insightful. 

IV.  OBJECT BASED CODING 

An important objective in designing an object based model is 
to assure that boundary and color information can be coded under 
a common framework. The framework used by PWC is that of a 
multiple context binary arithmetic coder. This framework was 
selected for two reasons. First, composing the model from binary 
decisions minimizes granularity and maximizes opportunity for 
compression. Second, arithmetic coding can take the hard edges 
off of a model, allowing it to be used effectively on a wider 
variety of source material. 

A. The PWC Language 

The PWC coding language is composed of the four decisions 
shown in Table 2. D1 decisions are used to establish the 
boundaries between constant color domains. Decisions D2-D4 are 
used to establish domain color.  

D1 Is the current pixel’s color identical to that of a 
specified rectilinearly connected neighbor? 

D2 Is the current pixel’s color identical to that of a 
specified diagonally–connected neighbor? 

D3 Is the current pixel’s color identical to a guessed 
value? 

D4 What is the current pixel’s color? 

Table 2 
Piecewise–Constant Language 

D1-D3 are naturally binary. To maintain compatibility with 
PWC’s coding framework, D4 is accomplished through a 
composition of binary decisions. The following discussion 
describes how the PWC language is used in an object-based 
model. 

B. Boundary Coding 

One way of viewing the constant color domains of a palette 
image is as countries on a geographical map. In fact, one possible 
way to code boundary information would be to recolor domains 
using just enough colors to maintain different colors for adjacent 
domains. Some images, such as black/white documents, require 
only two colors. However, it has long been known that at least 
four colors are necessary to color an arbitrary map2[20]. Figure 2 
is an example of a very simple map that cannot be colored with 
fewer than four colors. 
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Figure 2 
The Simplest Four Color Map 

Minimal map colorings can be difficult to obtain and as such 
are not very useful for coding[21]. However, the chromaticity of a 
map does give a proportional indication of how much information 
is necessary to code it. A two-color map requires only one 
decision at each pixel location: is the pixel black or white? A four 
color map requires two decisions to choose among the four 
possible colors. A desirable goal is to find a single representation 
that can efficiently represent both types of map. 

The edge map, introduced by Tilton[22], represents boundary 
information via the introduction of imaginary edges between 
pixels. Each pixel is assigned one vertical and one horizontal edge 
in a separator lattice. In the edge map representation, binary 
decisions can be naturally used to determine whether or not a 
particular lattice site is full. The toy image of Figure 2 has twenty 
two full lattice sites. The remainder are empty. 

A remarkable property of edge maps is that connectivity 
constraints prevent them from being arbitrarily populated. When 
fully exploited, the connectivity property allows a boundary coder 
to adapt to local chromaticity. 

1. Connectivity Constraints 

PWC populates its edge map boundary model in raster order. 
At each pixel location, L, the state of vertical separator site is 
determined first, followed by the horizontal site. Population 
decisions are made using D1 decisions from the PWC language. 
On Figure 3 the two rectilinear separator decisions are labeled 
D1v and D1h respectively. 

D1h

D1v

L

 
Figure 3 

Connectivity Constraints 

Due to connectivity constraints, D1h can often be made 
deterministically. For example if none of the three causal edges 
touching the left end of separator site D1h is full, then D1h is 
deterministically empty. If only one of the causal edges is full, 
then D1h is deterministically full. 

Using the idea of deterministic decisions, an upper bound on 
the maximum rectilinear decision entropy can be developed. 
Given a zero order probability, p , that a separator lattice site is 
full, the probability that a horizontal separator is deterministically 
determined is: 

D p p p p( ) ( ) ( )   1 3 13 2 . (1) 

D p( ) is plotted in Figure 4. 
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Figure 4 
Deterministic Decision Probability 

Also, given identical p , the vertical decision entropy is: 

H p p p p p1 2 21 1( ) log ( ) ( ) log ( )     . (2) 

The horizontal entropy adjusted for determinism is: 

H p D p H pv2 1( ) ( ( )) ( )  , (3) 

and the total edge entropy is: 

H p H p H pT ( ) ( ) ( ) 1 2 . (4) 
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Figure 5 
Total Edge Map Decision Entropy 

The maximum of HT  is 1.607 and it occurs at a full edge 

probability of 0.632. HT  is plotted in Figure 5. Note how HT  

approaches the single decision entropy, H1 , at low p  and 

approaches 2 1H  at high p . On sparse images only one D1 

decision need typically be made at each pixel location. 
A completely two color map has the additional connectivity 

property that each separator lattice intersection can have only 0, 2, 
or 4 adjoining edges. D p( )  therefore further simplifies: 

D p p p p p p p( ) ( ) ( ) ( )       1 3 1 3 1 13 2 2 3  (5) 



giving the expected result of complete determinism for D1h. 

2. Edge Decision Context Models 

For conditioning separator site population decisions, PWC uses 
the edge model proposed by Tate[23] and shown in Figure 6. Tate 
used a ternary alphabet in his work but as described previously 
PWC uses two binary D1 decisions. Since the model for D1v has 
eight elements and the model for D1h has nine, the total number 
of contexts for conditioning D1 decisions is 768. Connectivity 
constraints reduce the number of active contexts to 512. 
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Figure 6 
Edge Context Model 

C. Color Coding 

For typical palette images, neighboring pixels do not have a 
linear predictive relationship. Further, the sparse context problem 
makes it prohibitive to keep track of complete neighborhood color 
statistics. PWC avoids these problems and takes advantage of the 
strengths of both methods through a novel multi-stage color 
determination process. 

When establishing the color of a domain, PWC first tries to 
establish diagonal connectivity. Failing that, a more general 
process called color guessing is attempted. Finally, when color 
guessing fails, the color is established via predictive coding. A 
predictive model is used for the final stage because some color 
reduced natural images, especially those of predominantly one 
tint, can exhibit significant correlation in spatial and value 
adjacency. 

1. Diagonal Connectivity 

D2 decisions are used to establish diagonal connectivity in 
PWC. Diagonal connectivity is only defined at lattice 
intersections where there is no rectilinear connectivity. Figure 7 
shows the two causal orientations of diagonal connectivity at a 
lattice intersection, L, that has four impinging boundary segments. 
Each potential diagonal connection requires one D2 decision. The 
number of diagonal connections considered by the model drops 
quite rapidly as the edge density decreases and is typically less 
than 0.5 decisions per pixel. 
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Figure 7 
Diagonal Contexts 

Domain color is usually more important than domain shape in 
conditioning D2 decisions. For this reason D2 decisions are only 
made once the color to be propagated across an diagonal 
connection is known. Connection orientation is also an important 
conditioning criteria in many images. Using both orientation and 
color in a context model for D2 decisions requires two model 
parameters for every color used by an image. On Figure 7 the two 

orientations are represented by the left and right glyphs and the 
propagating color is labeled C. 

2. Color Guessing 

Given a causal color context, typically only one or a few 
following colors predominate. This leads to the idea of using 
previously determined colors in the same context as guesses. To 
maintain one guess for each context of a 256 color first order 
model, requires only 256 model parameters. 
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Figure 8 
Guess Contexts 

Color guessing, PWC language element D3, is designed to 
model the neighboring color relationships in an image while using 
a controlled number of model parameters. A guess is simply some 
color that has occurred previously in the coding process. The size 
of a guess model is proportional to DS  where D  is the palette 
depth of the image and S  is the number of neighboring colors 
used in the model. To maintain a reasonably sized model, the 
number of neighboring domain colors used to condition D3 must 
be limited. For 256 color images it is usually only profitable to 
include one neighboring color in the coding context. The left 
glyph of Figure 8 shows a known pixel, C, used as a guess context 
for the unknown pixel, L, to its east. The right glyph of the figure 
shows three neighboring colors used as a guess context. The three 
color configuration is normally only useful for palette images of 
depth four (sixteen possible colors). 

The exact size of a guess model is determined by the number 
of guesses for which statistics are maintained. One possibility is to 
maintain statistics for every possible color occurring in each 
context. The size of this straightforward guess model is DS1 , no 
different from a complete neighborhood color model. With such a 
large model, many guesses are not very useful in determining 
color. Compression suffers because of the large number of mostly 
useless parameters to be learned. Coding speed suffers because a 
large number of largely irrelevant decisions are made. 

One way to solve both of these problems is to limit the number 
of guesses maintained simultaneously by the model to some fixed 
number. When limiting guesses, a mechanism is needed to 
maintain only good guesses: guesses that are mostly correct. One 
way to achieve this is through guess competition within a guess 
pool. 

The competitive mechanism used by PWC a least recently used 
(LRU) chain. In this application a context is moved to the front of 
the LRU any time its associated guess is correct. When a new 
guess is added to the pool and the pool has reached its maximum 
size, the guess at the end of the LRU chain is sacrificed. Figure 9 
shows the guesses of a guess pool chained from lists determined 
by a context identifier. The average number of guesses per context 
is the size of the guess pool divided by the number of guess 
contexts. It should be emphasized that the guess pool is global. 
Competition occurs both between guesses in the same context and 
guesses in other contexts. 
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Figure 9 
Guess Pool Structure 

The complete guess pool operation is as follows: 

When D4 decision is made, the result is added to the 
head of the guess pool LRU and to the tail of the 
appropriate decision context’s guess chain. 

When a D3 decision is correct, its associated context is 
moved to the head of its guess chain and to the head of 
the guess pool LRU. 

When the guess pool is full and a guess must be 
sacrificed, it is removed from both its associated guess 
chain and the end of the LRU. 

The statistics of a D3 context are only updated when 
they are actually used to make a decision. No attempt is 
made to keep accurate conditional probabilities. 

The statistics of a sacrificed D3 context are decayed and 
kept as a prior for its new role. 

Guesses that are known to be impossible from prior D1 
and D2 decisions are ignored. 

3. Guess Failures 

When diagonal connectivity and color guessing both fail, PWC 
makes D4 decisions to introduce innovative colors to its model. 
Depending upon the number of colors in the image, two different 
procedures are used for D4. When the number of colors is sixteen 
or fewer, D4 is made using zero order color statistics. Because all 
decisions must fit into PWC’s binary arithmetic coding 
framework, color statistics are kept in a binary tree and each bit of 
the coded symbol’s binary description is coded separately. 

When the number of image colors is greater than sixteen, D4 
decisions are made via predictive coding. The predictor used is 
the hybrid planar/edge predictor of JPEG-LS[1]. Prediction 
residuals are coded using Don Speck’s Activity Level 
Classification Model[24]. ALCM uses Rice[25] mapping followed 
by Golomb[26] coding. The Golomb parameter is selected using 
the logarithm of the absolute maximum difference in the causal 
neighborhood. Again in keeping with PWC’s coding framework, 
each Rice-Golomb bit is coded individually. 

D. Object PWC 

The PWC language is used in an object-bases coder in two 
image passes. In the first pass, boundaries between constant color 
rectilinear domains are established via one or two D1 decisions at 
each pixel location. In a second pass, domain colors are 
established through a sequence of decisions D2-D4. The operation 
is summarized as follows: 

Scan the image in raster order and at each pixel location: 
Populate the vertical separator site (D1). 
Populate the horizontal separator site using connectivity 

constraints or failing that by making a D1 decision. 
Mark all pixel as uncolored. 

Scan the image in raster order and color each uncolored 
domain as it is encountered: 
Determine if the topmost domain stripe can be 

diagonally connected to an already colored pixel by 
making zero, one or two D2 decisions. 

Failing that, using a sequence of D3 decisions to 
determine if the unknown color is in the guess pool. 

Failing that, establish the domain color using D4. 
Flood the uncolored domain with the established color. 

V.SCANLINE ORIENTED CODING 

The flooding process of object PWC is the only aspect of the 
algorithm that is not raster local. Even though flooding always 
commences from the “highest” pixel in a domain, it is not a 
completely top down process. For domains that are concave on 
their upper periphery, the flooding process must descend into the 
body of the domain and then re-ascend into upper extremities. For 
example, the “H” on Figure 10 is first encountered at the top of its 
left vertical segment. In order to reach the top of the right vertical 
segment, the flooding process must re-ascend from the connecting 
horizontal segment. 

 

Figure 10 
Excerpt from JPEG-LS Compound Document #1 

To convert object PWC to a single pass algorithm, the flooding 
process must be altered to be entirely top down. One fortunate 
characteristic of palette images is that upper concave domains are 
relatively rare in practice. Further, when they do occur they often 
have significant extent, so the cost of color acquisition relative to 
shape description is relatively low. One exception is small-font 
two-color text like that of Figure 10. However, in this context the 
cost of color acquisition itself is relatively low. Taken together 
these considerations lead to the idea of top down flooding 
augmented with limited color reacquisition. 

A. Streaming PWC 

Instead of making two complete image passes as in object 
PWC, the basic strategy of streaming PWC[27] is to make two 
passes through each image scanline. The first pass makes D1 
decisions to establish rectilinear connectivity within the scanline 
and to the previous scanline. The second pass determines the color 
of each domain stripe by either propagating the color from the 
previous scanline or failing that by making decisions D2-D4. 

The requirements for the color determination pass are 
somewhat subtle. The key point is to avoid making unnecessary 
color decisions. For example, once the color for the roof of the 
“T” in Figure 10 is established on the first scanline the color can 
be propagated down the trunk without making further color 
decisions. Similarly, though the color of the “H” must be 
determined twice on the first scanline, color propagation is 
possible on subsequent scanlines. Perhaps not as obvious is that 
color propagation is also possible for the cross of the “t”. 

Color determination is accomplished via two passes over each 
domain stripe. On the first pass, the boundary model built by the 
connectivity pass is consulted to determine whether or not a color 
can be propagated from the previous scanline. Propagation is 
possible if at least one pixel on the previous scanline is not 



separated from the current scanline stripe by horizontal separators 
in the boundary model. 

If color propagation is not possible, the stripe color is 
determined via decisions D2-D4. The stripe is filled in a second 
pass. The streaming algorithm is summarized thusly: 

For each image scanline 
Make a first pass and make D1 decisions to 

determine rectilinear connectivity. 
On a second pass, determine the color of each 

domain stripe: 
Make a first pass to determine the possibility of 

color propagation. 
If color propagation is not possible, determine 

the stripe color via a D2-D4 sequence. 
Make a second pass to update the color model. 

VI.  SPARSE IMAGE METHODS 

Though significantly more efficient that object PWC, 
streaming PWC suffers from a problem common to all 
neighborhood context models: a disproportionate amount of 
computational effort is spent encoding uniform image areas. 
Because large uniform areas are quite common in palette images, 
the average compression speed of streaming PWC is significantly 
slower than competing one dimensional methods. 

To ameliorate this problem a recent version of PWC uses a 
new method called the skip-innovation model[28] to efficiently 
blend two-dimensional modeling and run-length codes. The basic 
idea is to skip over uniform areas entirely if possible, and to 
partially skip them if not. 

A. The Skip-Innovation Model 

Sparse images often consist of a relatively large number of 
features embedded in a smaller number of relatively uniform seas. 
When a two-dimensional model is used to code such images, 
acquisition of image features largely takes place in uniform 
contexts and coding of previously acquired features largely takes 
place in non-uniform contexts. 

 

Figure 11 
A Skip 

To take advantage of this characteristic, a new decision is 
introduced into the PWC coding model. When a uniform context 
is encountered, its length is determined and a decision is coded as 
to whether or not it can be skipped entirely. Runs that cannot be 
skipped are coded in the normal unary fashion. For example, the 
two black features on Figure 11 are separated by a run of seven 
uniformly white coding contexts. Using the skip model this run is 
coded as a single affirmative skip decision. 

 

Figure 12 
An Innovation 

Skip failures are the result of new features needing introduction 
to the model. The position of these new features, or innovations, is 
the information that must be conveyed by the coder. The example 
of Figure 12 shows an innovative feature located four pixels into a 
contiguous context of length seven. In the skip-innovation model, 
innovative locations are encoded with special binary codes. 

B. Skip-Innovation Codes 

Skip innovation codes are related to Golomb codes. The skip 
decision, S, can be viewed as the magnitude or unary portion of 
the code, the innovation, I, as the binary portion. The length of the 
unary portion of the code is always one. The basic length of the 
binary portion is the ceiling of the base two logarithm of S. As 
with Golomb codes, the basic length of I can be significantly 
reduced if S is not a power of two. The procedure used for 
constructing skip-innovation codes is as follows: 

Count the number, S, of uniform contexts that occur 
before the next occurrence of a non-uniform context. 

Counting no more than S, count the number of pixels, I, 
to be coded whose value is identical to that populating 
the coding context. 

If I S , encode a one, otherwise encode a zero and: 

Determine  D S log ( )2 , the number of binary digits 

required for a maximal I. 
Form a D digit binary representation of I. 
For each digit of the binary representation of I starting 

from the most significant: 
Determine the minimum value, T, that would result 

if that digit took on a value of one and previous 
digits took on their previously encoded values. 

If T S encode the digit. 

SI  codes for values of S and I up to seven are shown in Table 
3. 

I S=1 S=2 S=3 S=4 S=5 S=6 S=7 
0 0 00 000 000 0000 0000 0000 
1 1 01 001 001 0001 0001 0001 
2  1 01 010 0010 0010 0010 
3   1 011 0011 0011 0011 
4    1 01 010 0100 
5     1 011 0101 
6      1 011 
7       1 

Table 3 
Skip-Innovation Codes for S = 17 

For m not equal to a power of two, Golomb assigned the 
shorter binary sequences to shorter run lengths. Perhaps somewhat 
counterintuitively, the shorter skip-interval codes are assigned to 
longer runs. The first reason for this is obvious. The most frequent 
value for I is S, representing the lack of innovation. The second 
reason is more subtle. 

Certain irregular or low slope features may be untrackable by a 
reasonably sized context model. The smaller the context model, 
the more likely a feature is to fall into this category of pseudo-
innovations. For example, on Figure 13 the pixel labeled with a 
arrow is a pseudo-innovation. It is connected to a larger feature 
already known by the model but the model is too small to make a 
local determination. In this case, S is six and I is five resulting in 
the SI code of 011, one bit shorter than the basic code length of 
D  1 . 



 

Figure 13 
Pseudo-Innovation 

Note that the SI code generation mechanism is extremely 
simple and efficient. In fact, it was originally chosen just for these 
properties. Only after several failed attempts at improvement was 
it recognized that skewing the code distribution towards S was a 
natural way to take advantage of the increased likelihood of 
pseudo-innovations appearing near S. 

C. SI Context Models 

Since skip-interval codes are part the image model, adaptive 
arithmetic coding can be used to further match them to the source 
material. A convenient context for coding S is D, previously 
calculated to determine the maximum possible number of binary 
code digits. To the extent that skips of various sizes are not 
uniformly distributed, using D as a context model for S can reduce 
the overall code string length. 

Often, multiple innovations are located in a failed skip. Due to 
the structure of the SI codes, I will contain multiple leading zeros 
when the distance between innovations is substantially less than 
the skip length. The following context model can be used to 
capture this structure: 

Allocate one context for each bit of the maximum 
possible skip length. 

Designate one additional context the lumped context. 
Initialize a variable, ONE_SEEN to zero. 
From the most significant bit position of I to the lowest: 

Code the bit under its positional context if 
ONE_SEEN is zero and under the lumped context 
otherwise. 

If the coded bit is a one, set ONE_SEEN to one. 

On black and white documents, the average black run often 
differs substantially from the average white run. Therefore it is 
useful to double number of contexts used for coding the SI bits. 

D. Mixing SI Codes and Unary Codes 

SI codes are designed for use as an alphabet extension 
mechanism in line oriented image codes. Such extensions allow a 
coder to switch between normal pixel at a time, or unary, coding 
and run length coding. The SI mechanism differs from 
conventional one-dimension run length coding in that it is 
inherently embedded in a two-dimensional coding process. SI 
never codes information in more than one context and therefore 
does not lose any of the benefit of the two-dimensional model in 
use. 

The two-dimensional nature of SI creates one subtlety that may 
not be immediately apparent. A typical one-dimensional run 
length code, in addition to encoding a run of identical pixels, also 
imparts some information about the pixel immediately following a 
coded run. The additional information imparted is that the 
following pixel is different from the coded run of pixels. 

The SI mechanism is slightly different in that it only imparts 
information about the following pixel when a skip failure has 
occurred. The pixel immediately after a successful skip may or 
may not be of the same color as the just skipped run. The follow 

procedure shows how a decoder intermixes SI and unary codes on 
a single image scanline: 

For each pixel location on the scanline 
If the current pixel’s coding context is non-uniform 

Decode the pixel in the conventional unary 
manner. 

Advance the current pixel pointer one location. 
Otherwise 

Decode a skip-innovation code 
If I S , skip forward S pixel locations filling 

skipped pixels with the current color. 
Otherwise: 

Skip forward I locations filling skipped 
pixels with the current color. 

Fill the current pixel using the information 
that it is different from the current color. 

Advance the current pixel pointer by one. 

VII.  ARITHMETIC CODING 

The binary arithmetic coder used in PWC is the carry-free 
coder[29] written by Don Speck. The carry-free coder goes back 
to the roots of arithmetic coding to avoid IP issues associated with 
more modern techniques. Statistics are kept as counts and the 
coding interval is split with a multiply/divide operation. For all 
decisions other than D4, PWC augments the basic coder with 4-5-
6-7 adaptation where statistics are halved whenever the least 
probable symbol count reaches eight. For D4, statistics are only 
halved when the maximum count value is attained. 

Because the skip-innovation model eliminates the need for the 
arithmetic coder to accommodate large symbol skews, the 
maximum count value used in PWC is 255. This allows for a 
16 8 8 16    bit multiply/divide operation which can be 
performed relatively quickly on modern CPU’s. As a further 
refinement, the most recent version of PWC approximates the 
arithmetic multiply/divide operation with a table lookup and 
multiply. Since the precision of the counts is only eight bits, the 
lookup table requires 64KB of memory. 

VIII.THE PWC CODEC 

The PWC codec uses four different models depending upon the 
characteristics of the source material. The first model is tailored 
for two color images, the second for images up to 16 colors, the 
third for color images up to 256 colors, and the last for grayscale 
images up to 256 colors. In the B/W model the default JBIG ten 
color model is used for D1. In the 16 color model, the nine edge 
model is used for D1, D2 is not made, and the three neighbor 
model is used for D3. The 256 color model uses the nine edge 
model for D1, the orientation/diagonal color model for D2, and 
the single color model for D3. The grayscale model does not make 
D1–D3 decisions. The number of model parameters is 
summarized in Table 4. 

Palette Model Parameters 
Depth D1 D2 D3 D4 
1 1024 0 0 0 
4 512 0 256 16 
8 512 512 1024 760 
8-gray 0 0 0 760 

Table 4 
Model Parameters 



The number of SI contexts is  2 1 12( log ( ) )W   , where W is 

the image width. Half of the contexts are used to condition S and 
half for I. In the black/white model, the number of SI contexts is 
doubled. 

IX.EXPERIMENTS 

A. The PWC Corpus 

During the initial development of PWC, a group of images 
intended to serve as a benchmark palette image corpus was 
assembled. The PWC corpus contains completely synthetic 
images, nearest color quantized images, quantized images with 
error diffusion, and compound images containing both synthetic 
and natural elements. An attempt was made to balance the number 
of bits of each source type. Some particular emphasis was placed 
on obtaining palette images from popular sites on the World-Wide 
Web. The last image in the corpus, yahoo, is shown in grayscale 
form in Figure 1. 

Image GIF PNG bzip2 BW-MTF 
benjerry 4,401 4,571 3,896 3,412 
books 11,177 10,831 10,310 9,396 
ccitt01 38,862 28,910 24,809 23,412 
cmpndn 62,682 56,397 59,324 57,210 
cmpndu 76,759 69,438 49,146 45,878 
flax 846 318 273 460 
gate 23,313 20,124 18,344 16,991 
music 1,987 1,647 1,729 1,606 
netscape 17,442 15,879 13,842 12,591 
pattern 1,782 1,928 1,537 1,375 
sea_dusk 6,362 2,540 1,886 2,230 
stone 4,753 3,906 4,028 4,361 
sunset 100,186 81,794 76,743 64,783 
winaw 18,559 18,732 16,155 14,995 
yahoo 7,097 6,275 6,212 5,670 
Total 376,208 323,290 288,234 264,370 
Time 2.0/1.5 2.7/1.1 7.7/2.6 —3 

Table 5 
One Dimensional Methods on the Palette Image Corpus 

Table 5 shows the results of applying various one-dimensional 
compression methods to the PWC corpus. PNG compresses better 
than GIF but both are outperformed by bzip2. The column labeled 
BW-MTF is bzip2 without move to front coding. 

Table 6 shows the results of several two-dimensional methods 
applied to the PWC corpus. The first column is CALIC 
augmented with palette ordering, the second column is the second 
version of EIDAC, and the last column is RAPP. RAPP is the 
only one of these methods designed expressly for palette images 
and it is the only one that compresses better than bzip2. 

                                                                 
3 Unknown but probably better than bzip2. 

Image CALICO EIDAC RAPP 
benjerry 4,193 2787 2,768 
books 14,033 8742 9,634 
ccitt01 18,146 15861 15,895 
cmpndn 56,951 60033 63,605 
cmpndu 71,109 47582 46,520 
flax 379 90 124 
gate 20,555 17891 17,340 
music 1,648 955 831 
netscape 14,302 11697 12,127 
pattern 1,755 1123 1,315 
seadusk 1,446 1208 787 
stone 8,440 4064 4,665 
sunset 113,710 92288 62,695 
winaw 21,686 13384 13,662 
yahoo 6,884 5079 4,897 
Total 355,237 282,784 256,865 
Time —4 43.45 30/31 

Table 6 
Two Dimensional Methods 

Table 7 shows compression results from three different 
versions of PWC. PWC-O is object PWC, PWC-S is streaming 
PWC and PWC-SI is streaming PWC plus SI codes. Encode and 
decode times are symmetric so only one timing result is shown for 
each method. Color reacquisition accounts for the slightly worse 
compression performance of PWC-S relative to PWC-O. 
Interestingly, PWC-SI recaptures this loss and more. This result 
not yet fully developed and is the topic of a future paper. 

Image PWC-O PWC-S PWC-SI 
benjerry 2,387 2,418 2,399 
books 8,630 8,616 8,153 
ccitt01 12,890 12,881 12,683 
cmpndn 40,390 54,780 53,021 
cmpndu 53,951 40,917 39,556 
flax 149 107 142 
gate 15,530 15,784 15,282 
music 735 755 696 
netscape 10,649 10,786 10,533 
pattern 1,174 1,178 1,099 
seadusk 657 646 678 
stone 4,001 4,268 3,637 
sunset 52,341 52,923 51,623 
winaw 11,440 11,459 10,853 
yahoo 4,374 4,443 4,350 
Total 219,218 221,961 214,705 
Time 22.8 8.0 2.4 

Table 7 
Improving PWC Performance 

Table 8 shows in system performance of PWC, PNG, and GIF 
in an Internet browser environment. The first column shows local 
hard-drive performance under Netscape Navigator 4.5. The 
second column shows local hard-drive performance under 
Microsoft Internet Explorer 4.01. The last column shows IE 
performance over a 28.8Kbit/sec dialup connection. 

                                                                 
4 Too cumbersome to measure, but substantial. 
5 Timed on a 360MHz SUN SPARC Ultra 5. 



Format Navigator Explorer 28.8Kb 
GIF 2.5 2.0 2:03 
PNG 6.0 2.0 1:51 
PWC 2.5 2.0 1:13 

Table 8 
In-Browser Performance 

B. An Expanded Palette Image Corpus 

The PWC corpus is designed for benchmarking the average 
behavior of palette image algorithms. It is less useful for focusing 
on various palette image subclasses. Therefore an expanded 
corpus was assembled to better map the characteristics of the 
higher performance methods. 

The expanded corpus of Table 9 contains five image groups, 
each designed to cover a specific performance regime. The 
CCITT fax documents represent the class of two-color images. 
Representing images with relatively few colors is the JPEG-LS 
test image, pc. The third group is the PWC corpus, representing 
images with an average number of colors. The dither group 
contains two highly dithered images with a full color complement 
that also retain some residual predictive structure in the palette6. 
The last group is the well known grayscale image of lena. 

 PWC-SI bzip2 PNG GIF JPEG-LS

ccitt 186,513 372,640 418,490 464,437 577,849

pc 98,831 198,723 225,936 376,482 361,570

corpus 214,705 288,363 323,290 376,208 415,734

dither 477,564 485,321 544,694 645,732 559,652

lena 141,944 173,645 223,051 230,921 138,883

Total 1,119,557 1,518,692 1,735,461 2,093,780 2,053,688

Time 12.5 36.3/12.6 16.0/3.6 9.9/6.7 15.6/12.9

Table 9 
Expanded Corpus Results 

The four highest performance reference coding methods, bzip, 
PNG, GIF, and JPEG-LS, were compared against PWC-SI on the 
expanded corpus. In the table bzip, PNG, and GIF encode and 
decode times are shown separated by a slash. Two encode times 
are shown for JPEG-LS. The first is compression time elapsed. 
The second is time reported by the program. 

PWC is the only method that is robust across all the image 
classes. PWC operates similarly to JBIG on b/w images and to 
JPEG-LS on predictive material. It blends smoothly between the 
two and even does well on images that can perhaps be better 
described with a one dimensional model. 

C. The SI Mechanism 

In PWC, SI codes are used within an arithmetic coding 
framework. However, because it cleanly separates one and two 
dimensional modeling, SI may have general utility as a model 
blending tool. Table 10 uses the CCITT Fax documents to show 
how SI can be effectively used in both arithmetic and non-
arithmetic coding frameworks. 

                                                                 
6 Obtained from Nasir Memon. 

ccitt# SI JBIG JPEG-LS SI-jls 
1 12,675 12,788 35,840 21,829 
2 7,726 7,938 30,439 13,221 
3 19,494 19,950 71,211 40,110 
4 48,461 48,942 126,450 84,595 
5 22,647 23,187 73,769 42,589 
6 11,493 11,689 51,664 24,983 
7 51,085 52,227 133,423 77,349 
8 12,932 13,220 55,053 25,152 
Total 186,513 189,941 577,849 329,828 
Time 3.3 9.5 7.3 2.5 

Table 10 
CCITT Fax Reference Documents 

Columns PWC-SI and JBIG of Table 10 are PWC-SI and 
sequential JBIG respectively. Remarkably, PWC-SI compression 
is almost 2% better than JBIG. This despite the fact that the JBIG 
probability estimator is tuned for these images The source of 
PWC-SI’s improvement is that by using SI, more contexts are 
available for modeling uniform image areas. 

The speed up achieved by PWC-SI over JBIG (with typical 
prediction) is ~3:1. To the author’s knowledge this is the highest 
performance arithmetic result on the CCITT documents yet 
published. 

The final two columns of Table 10 compare JPEG-LS and a 
matched non-arithmetic SI variant. The results show that for 
structured material SI is a more robust alphabet extension 
mechanism than the  block-Melcode of JPEG-LS. The reason is 
that once in run mode JPEG-LS pays no attention to the 
surrounding context. This results in context mixing and loss of 
compression efficiency. The SI mechanism differs from 
conventional one-dimension run length coding in that it is 
inherently embedded in a two-dimensional coding process. SI 
never codes information in more than one context and therefore 
does not lose any of the benefit of the encompassing two-
dimensional model. 

D. Dynamically Created Content 

Because the PWC-SI model is symmetric it lends itself to 
compression of dynamically created content of the type 
commonly used on the Internet. Such content is often synthetic or 
composite and as such is often both sparse and highly structured. 
Examples of such material include charts, figures, maps, clip art, 
page backgrounds, and user-interface elements. 

Metric PNG PWC 
Comp. Bytes 33,614 13,558 
Comp. Rate 29.2:1 72.4:1 
Encode (sec) 1.1 0.6 
Decode (sec) 0.6 0.6 
Enc/Dec (sec) 1.7 1.2 

Table 11 
Dynamic Content Examples 

In Table 11 an example from each of these classes was 
compressed using PWC-SI and PNG, its closest competitor in 
terms of compression rate and efficiency. PWC-SI’s compression 
rate is about two and a half times better than that of PNG. 
Remarkably, PWC-SI matches PNG’s extremely fast decode 
speed on encode as well. 



E. Experimental Notes 

All compression times were obtained using a 200 MHz Intel 
Processor running Microsoft Windows. The SI augmented PWC 
codec and browser plugins for the two major internet browsers are 
available at http://www.caravian.com. The SI-jls codec and older 
veisions of PWC are obtainable via email request from the author. 
PWC compression times were obtained using the “-flip” option of 
the codec. 

JBIG results were obtained using the JBIGKIT[30]. JPEG-LS 
results were obtained using the HP Labs LOCO-I 
implementation[31]. BWT results were obtained using bzip2[32].  

Unless otherwise noted,. all times are time elapsed. GIF 
compression times were simulated using compress[33], and PNG 
compression times were simulated using command line versions 
of zip[34] and unzip[35]. 

CALICO, EIDAC, and RAPP results were obtained using 
programs obtained from their respective authors. Ziya Arnavut 
supplied the BWT-MTF data. 

X.SUMMARY 

From its object based inception, PWC has exhibited the best 
known lossless compression of palette images. Over time it has 
evolved into a high performance scanline oriented code that 
handles image structure particularly well. Since it is symmetrical 
PWC may find its best use in compression of dynamically created 
synthetic content. 

PWC has also introduced a new philosophy for using binary 
arithmetic coding to blend widely disparate image models. Along 
this line several new ideas have been introduced including context 
competition and SI run-length codes. PWC’s development has 
opened many avenues for further investigation and it promises to 
improve further in the future. 
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