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ABSTRACT 

This paper introduces two image partition boundary coding models that are composed solely of binary decisions. Because of 
their simplified decision structure, the models can take advantage of various accelerating schemes for binary arithmetic 
coding. The number of decisions necessary to describe a partition using either model varies between one and two per pixel 
location and is proportional to partition complexity. 

The first model is a binary decomposition of Steve Tate’s neighboring edge model. The decomposition employs boundary 
connectivity constraints to reduce the number of model parameters. The constraints also reduce the number of descriptive 
decisions to just over one per pixel for typical partitions. A theoretical zero order entropy bound of 1.6 bits per pixel also 
results. 

The second model represents a partition as a sequence of strokes. A stroke consists of one or two three-way chains. Chain 
termination is accomplished without redundant boundary traversal by using a special termination decision at encounters with 
previously drawn chains. Chain initiation decisions are also conditioned on previously drawn edge patterns. Chain direction 
decisions are conditioned via a boundary state machine. 

The paper compares object based boundary coding and pixel based coding, placing the new coders into the latter category. A 
technique for determining the appropriate application domain of pixel based codes is developed. The new coding models are 
placed into context with previous pixel based work by the development a new categorization of image partition 
representations. Four representations are defined, the map coloring, the edge map, the outline map, and the perimeter map. 
Experiments compare the new methods with other pixel based methods and with a canonical object based method. 

Keywords: contour coding, boundary coding, image segmentation, map coloring, image partition, chain coding, edge map, 
outline map, perimeter map 

1. INTRODUCTION 

The image partition has traditionally been closely linking with the idea of image segmentation. More recently, the partition 
has been separated from any particular segmentation method and found use in its own right. For example, the new MPEG-4 
video coding standard1 uses a simple partition coding method for foreground/background separation. Another new use of 
partitioning is for compactly representing palette images2. The purpose of this paper is to help define just what image 
partition coding is about, and to disclose two new efficient coders. 

In the first section, the image partition is defined and related to the long-standing mathematical problem of map coloring. 
The partition coding problem is then connected to the image coding problem by the definition of several pixel based partition 
representations. Next, a technique for comparing  pixel based partition codes with object/vertex codes is developed. Once the 
motivation for pixel based coding schemes is clear, one of the pixel-based representations, the edge map, is used as the basis 
for two new boundary codes. The first code uses a raster neighborhood decision conditioning template. The second uses a 
chain code model. The two new codes are then compared to other image based codes on a synthetic geometric image 
rendered at various resolutions. Interpretation of the experiments and conclusions follow. 

                                                           
aThe author is an adjunct researcher at UCSC and cofounder of Netcelerate Software, Inc (www.netcelerate.com). His email 
address is paul@netcelerate.com or alternately paula@cse.ucsc.edu. 



2. PROPERTIES OF IMAGE PARTITIONS 

An image partition is a segregation of the image pixels into related groups. A domain is defined as a related group of pixels 
in an image partition. Partitions may be classified according to the shape and topological properties of their domains. A 
domain is contiguous if for all pairs of its pixels there exists a path between the pair that traverses only other pixels within 
the domain. A domain is rectilinearl- connected if all such paths start at the center of one pixel, make only rectilinear 
movements, and make intermediate stops only at the center of other pixels. The algorithms of this paper are designed for 

partitions containing only contiguous rectilinearly-connected domains. 

One particularly useful method of representing partitions is the map-coloring. A map-coloring of 
a partition is an image of the same size as the partitioned image whose pixels have two 
properties. First, all the pixels in the same domain have the same color. Second, all adjacent pairs 
of domains have different colors. Because all domains must be contiguous and rectilinearly-
connected, a map-coloring is a complete representation of a partition. For example, on the map 
coloring of Figure 1 there are five domains: two squares, a rectangle, a circle, and the surround. 
Since all domains must be contiguous, even though the circle and rectangle have the same color 
they must comprise separate domains. Similarly, since all domains must be rectilinearly 
connected, the two squares represent separate domains even though they touch at a corner. 

The chromaticity of a partition is the minimum number of colors 
necessary to map-color its domains. Figure 1 is an example of a two-
color partition. Two-color partitions allow separation of foreground 

from background. Further, if the color assignment is known it is possible to identify foreground 
and background given a two-coloring. 

Some partitions require three colors and it has long been known that 
the general case requires four. That four colors is also sufficient was 
not proven until 19773.  Figure 2 is a three color example and Figure 
3 is a simple four color example. 

The two color partition coding problem is equivalent to the 
black/white image coding problem and as such has significant 
literature coverage. One of the more recent applications of two-color 
coding is for foreground/background separation in MPEG41. The three color coding problem 
does not yet appear to have been addressed, but it may not have much commercial significance. 
The focus of this paper is coding four-color partitions. 

3. PARTITION REPRESENTATION 

While the map coloring is an important theoretical tool and an excellent medium for partition visualization and distribution, 
it is not particularly suited to coding. One problem is that four-colorings are relatively difficult to obtain. Another is that any 
code based upon a map coloring will necessarily reproduce the exact original coloring. Since any valid coloring is all that is 
necessary to reconstruct a partition, coding a particular coloring is inefficient. 

Another representation called the edge map avoids these problems and is often better suited as a base for coding a partition. 
In an edge map, pixels are modeled as small squares embedded in a separator lattice. Each pixel has four rectilinearly 
adjacent separator lattice sites. A separator lattice site is full if the two adjacent pixels lie in different domains and empty 
otherwise. A full separator site is simply called a separator. Since every separator lattice site is adjacent to two pixels, it is 
convenient to assign each site to a particular pixel. In this paper, the convention is to assign to a pixel the separator sites to its 
west and north. After assignment, two bits per pixel suffice to store an edge map. The low order of these bits is arbitrarily 
assigned to the vertical (western) separator site and the remaining bit to the horizontal (northern) separator site. Interestingly, 
the edge map has the same storage requirement as the four-coloring, but stores no particular color information. Even more 
interesting, as shown later, is that the uncoded storage requirement for typical edge maps is actually significantly less than 
two bits per pixel. 

 

Figure 1 

 

Figure 2 
Three Color Partition 

 

Figure 3 
Four Color Partition 



Figure 4 is a detailed rendering of an example edge map. The 22 full separator lattice 
sites are modeling with short line segments. For typically sized images, the detailed 
visualization method of Figure 4 is unusable. Further, it is desirable for an edge map 
visualization to fit into the same size image as the source partition. 

Figure 5 is a same size edge map rendering of the 128x128 
partition shown in the map-coloring of Figure 3. The possible 
edge values of 0, 1, 2, and 3 are rendered with luminance 
values of 255, 224, 128, and 0 respectively. The author 
believes that this particular method is the best possible for 
rendering edge maps at the resolution of the source partition. 
Still, it’s not an ideal visualization method. 

A true outline rendering of a partition cannot be done at the 
source resolution. This is because two pieces of information 
must be displayed for each pixel location. Resolution 
expansion in a single direction is not effective because it 

introduces distortion. Figure 5 is an outline rendering of the map coloring of Figure 3. An outline 
rendering is performed at 2x resolution in both the vertical and horizontal direction. For this 
example, a 128x128 map-coloring produces a 256x256 outline rendering. 

An outline rendering is produced from a map-coloring with the following 
algorithm.  

 Replace each pixel of the map coloring with a square block of four 
white pixels. 

 If the map colored pixel is different from its western neighbor, darken 
the two leftmost pixels of the corresponding outline block. 

 If the map colored pixel is different from its northern neighbor, 
darken the two topmost pixels of the corresponding outline block. 

 If the map colored pixel is different from the northwestern neighbor, 
darken the upper leftmost pixel of the corresponding outline block. 

An outline rendering is also a valid partition representation since a 
partition can be recovered from it. It’s not optimal for coding because its 
size before coding is twice that of both the map-coloring and the edge 
map. Even if a coding method could be designed that produced good 
compression efficiency, the coding speed would be no better than ½ that 
for the more appropriate representations. 

The perimeter map representation, shown in 
Figure 7, is produced by darkening all pixels that are rectilinear neighbors of pixels in other 
domains. The perimeter map is not a valid representation for three-color or four-color partitions. 
For example, the single line segment near the top of the partition cannot be distinguished from 
several smaller collinear line segments if those segments are separated by fewer than three pixels. 
The perimeter map can be used, however,  for building up a partition from separate descriptions of 
its domains. This process is called partition compositing. 

When used as a based for coding, a composited representation is inefficient for partitions requiring 
more than two colors. The reason is that all contours that are not foreground/background 
separations must be coded twice. For example, The boundary between the two squares of Figure 7 
must be coded once for the left square and again when coding the right square. The coding 
methods reported in this paper operate on complete partition representations and are designed to avoid the redundant coding 
problem. 

 

Figure 4 
Edge Map Detail 

 

Figure 5 
Compact Edge Map 
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Figure 6 
Outline Map 

 

Figure 7 
Perimeter Map 



4. OBJECT VS PIXEL BASED CODING 

Boundary descriptive codes can be classified as either object/vertex based or pixel based. In object based codes boundaries 
are described with a relatively small number of fairly complex descriptors. In pixel based codes a relatively large number of 
simple descriptors are used. Because object based methods use roughly the same number of bits to describe a feature 
regardless of its size, one can expect object based methods to work better for partitions with large features and pixel based 
methods to be superior for small features. 

The following procedure can be used to empirically determine an average 
feature size below which any particular object based method becomes 
inefficient: 

 Define an object based partition description language that is canonical 
for the type of partition being coded. 

 Construct a resolution independent description of a reference 
partition. 

 Using the resolution independent description, synthesize image 
partitions at multiple resolutions. 

 Compress the resolution independent description with an appropriate 
object based method. 

 Compress the various resolution image partitions with an appropriate 
pixel based method. 

 Find the resolution,  , where the object based and pixel based 
compression methods produce comparable results. 

If F  is the number of full separator sites in a particular resolution 
partition, and N  is the number of objects in the resolution independent 
description then define: 

 
F

N
. (1) 

to be the average feature size of a particular resolution partition. If   is 

the   of the   partition then partitions for which     should be 

better compressed with pixel based codes. Such partitions are designated 
freeform. 

An example application of this procedure should illuminate it further. 
Figure 8 shows an object based partition description using the RTI 
geometrical descriptive language. The RTI language has three elements: 
R, T, and I. R draws a rectilinear rectangle given two opposing corners. T 
draws an arbitrary triangle from its vertices. I draws the contour where 
the given algebraic expression is zero or greater on one side and less than 
zero on the other. Each element specifies a complete closed contour. The 
drawing order is important in that any boundaries enclosed by a later 
drawn contour are lost. 

When applied to a 256x256 integer grid, the description of Figure 8 produces the partition whose map coloring is shown in 
Figure 9. The RTI descriptive language is arguably canonical for this particular reference image. RTI is one dimensional and 
is effectively compressed with LZ methods. The ZIP utility compresses the 351 bytes in the description of Figure 8 to 163 
bytes. 

R(0,0,256,256) 
R(0,160,72,256) 
R(56,160,72,256) 
R(0,160,56,176) 
T(56,160,72,160,56,176) 
R(144,0,256,256) 
T(152,256,255,134,256,255) 
R(192,64,256,208) 
I((x-64)^2+(y-96)^2-1024) 
R(128,32,160,96) 
I(2.5*(x-142)^2+3*(x-142)*(y-132)+ 
  2.5*(y-132)^2-4096) 
I(1.0e8*(0.155*(x-128)-0.985*(y-66))^8+ 
 (0.985*(x-128)+0.155*(y-66))^8-1.667e15) 

Figure 8 
Geometric Image Synthetic Elements 

 

Figure 9 
Map Coloring of a Geometric Image 



Instantiating the RTI description at six resolutions produces the separator counts and 
 values shown in Table 1. Note that   roughly doubles for each 4x increase 
partition pixel count. The is because   is proportional to the partition’s total 
perimeter, not to its total area. Since determination of   requires actual data, its 

calculation of deferred to the experiments. 

 

 

 

5. RASTER NEIGHBORHOOD CODES 

The first use of a context model in the coding of edge maps was proposed by Tate4. The Tate model 
consists of the eight causal separator sites shown in Figure 10. This model is extremely simple and 
produces excellent coding results. 
One drawback to Tate’s method is the use of a four symbol alphabet to encode the separator state at 
each lattice location. While this strategy successfully brings all relevant information to bear on each 
four-way decision, it does not take advantage of advanced acceleration techniques that have been 
developed for coding binary alphabets. This section proposes an efficient technique for decomposing 
Tate’s four-way decisions into the fewest possible binary decisions. 

6. A FAST BINARIZED RASTER NEIGHBOR CODE 

A straightforward decomposition of the four symbol edge 
map produces two binary decisions for each raster location. 
In this discussion, for each raster location the vertical 
decision is made first followed by the horizontal decision. 
After decomposition, 256 binary contexts are required to 
hold vertical decision statistics. In order to bring a previous 
vertical decision to bear on its associated horizontal 
decision, the number of horizontal decision contexts must 
be double the number of vertical contexts.  

Since image partitions are not simply random edge maps, 
separator lattice connectivity constraints can be used to 
reduce both the number of decisions and the number of 
conditioning contexts. The fundamental constraint imposed 
by separator lattice connectivity is that each end of a 
separator must connect with some other separator. For a 
raster scan where horizontal decisions are secondary, this 
means that many horizontal decisions are completely 
determined by previously known separator patterns and 
need not be coded. 

Two types of previously known separator patterns are 
relevant. The first of these is the completely empty separator 

lattice intersection. At such an intersection three of the separator sites are known to be empty and therefore the fourth must 
also be empty. The second relevant pattern is the separator lattice intersection with a single full site. There are three possible 
singleton patterns, N, S, and E, each forcing the presence of a second separator to maintain connectivity. 

One consequence of the application of connectivity constraints is that only 256 binary contexts are required to hold 
horizontal decision statistics. The other 256 states are deterministic. The second consequence is that for typical partitions, 
substantially fewer coded decisions are necessary. If p  is the zero order probability that a separator lattice site is full, then 

the zero order entropy associated with vertical decisions is 

Size Separators  
32x32 236 19.7 
64x64 481 40.1 
128x128 964 80.3 
256x256 1938 162 
512x512 3899 325 
1024x1024 7828 652 

Table 1 
Object Model Instantiation 
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Deterministic Horizontal Decision Probability 



H p p p p p1 2 21 1( ) log ( ) ( ) log ( )     . (2) 

Given the same p , the deterministic horizontal decision 

probability is 

D p p p p( ) ( ) ( )   1 3 13 2 . (3) 

The horizontal decision entropy is therefore  

H p D p H pv2 1( ) ( ( )) ( )  , (4) 

and the total entropy is 

H p H p H pT ( ) ( ) ( ) 1 2 . (5) 

The maximum of HT  is 1.607 and it occurs at a full edge 

probability of 0.632. D p( ) is plotted in Figure 11 and HT  is 

plotted in Figure 12. Note that HT  approaches the single 

decision entropy, H1 , at low p  and approaches the 

unconstrained two decision entropy at high p . 

 

7. CHAIN CODES 

Chain codes can be divided into two major families, the distinguishing feature being the number of possible directions of 
movement at each point in the chain.  With the recent application of context dependent probability estimation to four-way 
chains5, the desirability of eight-way chains is somewhat attenuated.  We focus exclusively on four-way chains. 

Three types of information must be provided for a general-purpose boundary chain code: chain starting points, chain 
direction information, and chain termination indicators.  When coding two-color partitions5, each chain is guaranteed to 
return to its starting point.  Obviously, no two black features can touch each other or they would be the same feature. This 
characteristic allows self-terminating chains, where termination information is implicitly delivered by return to the starting 
point. 

Reliable termination conditions without backtracking allow for simplified direction information.  Only three decisions are 
possible at each point on the boundary, turn left, right or go straight.  The base information per chain event is reduced from 
two to log 2 3  bits. Unfortunately, when chain coding the boundaries of a three or four-color partition, things get more 

complicated and some form of redundancy must be introduced. 

One way to deal with the termination problem is to composit the partition from individual objects6. If the edge map 
representation is used, this results in the overhead of traversing most or all boundaries twice. If the perimeter representation 
is used, double traversal and backtracking are necessary. One possible way  to avoid these problems is to traverse only right 
or left sides of each domain7. This method, however, results in one starting point for each convex boundary section. For 
irregular domains, this produces multiple chain starting points per domain. 

The ideal boundary chain code should take advantage of connectivity constraints to make between one and two decisions per 
pixel location. It should use approximately one starting point per partition domain and should not incur significant chain 
termination overhead. The stroke code described next is one such code. 
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Figure 12 
Total Edge Map Decision Entropy 



8. THE STROKE CODE FOR IMAGE PARTITIONS 

The stroke code develops a partition via a series of 
strokes.  Each stroke consists of a start point, and 
one or two boundary chains.  Each chain of a 
stroke is terminated upon encountering a previous 
stroke or the image boundary.  The key idea is that 
encounters with previous strokes may or may not 
terminate a stroke.  Further information 
disambiguates each encounter. 

Strokes are decoded in turn:  start, chain and 
termination information is interleaved in the code 
stream.  Once the boundary is fully specified via 
strokes, domains may be grown by recursively 
joining groups of pixels that do not have a 
separator between them.  Figure 8.1 has seven 
domains of 1, 1, 2, 5, 6, 8 and 10 pixels plus the 
surround.  As can be seen, only six strokes are 
necessary to completely specify the boundary 
between these domains.  

We cover the major elements of the stroke code 
syntax from the perspective of the decoder.  We 
first cover stroke starting points or locations.  We then apply context dependent probability estimation to reduce the 
information content of stroke chains.  Finally, we develop a termination mechanism for stroke chains that almost completely 
retains their three-way decision character. 

8.1. Stroke Locations 

Each pixel in the image is a possible stroke location.  The decoder scans the image in raster order and determines whether or 
not a pixel is a stroke location.  The information associated with this process is called the stroke location information.  Each 
of the pixels labeled with L in Figure 8.1 are stroke locations. 

Each stroke location can have one or two boundary separators.  The possible separators are along the northern and western 
edges of the associated pixel.  Deciding that a pixel is a stroke location conveys additional information about the associated 
boundary separator sites.  The additional information conveyed depends upon what other separators abutting the stroke 
location are already known.  The previously known separators associated with a possible stroke location determine the stroke 
location context. 

If a pixel site is a stroke location and it already has one of its separators known, then the other separator becomes known.  If 
the separator to the north is already known, the separator to the west becomes known.  A stroke location context of this type 
is called a top location.  Similarly, a side location has its western separator previously known. 

Six small domains
plus surround.

Stroke locations
labeled with L

L3L2L1

L4

L5

L6

Stroke 1
Stroke 2
Stroke 3
Stroke 4
Stroke 5
Stroke 6

 

Figure 8.1 
Stroke Example 

Either Known or Unknown
Unknown Separator
Known Separator
Corresponding Pixel Site
Separator Lattice Site

lblcltlsle

 

Figure 8.2 
Stroke Location Contexts 

Name Determining information 
le Two previously known separators (enclosed) 
lt One known separator to the north (top) 
ls One known separator to the west (side) 
lb Zero known separators (bare) 
lc Zero known separators (SE corner) 
  lc2 SE corner, Decide one or two separators 
    lcw SE corner, One separator, Decide N or W 

Table 8.1 
Stroke Location Contexts 



If a stroke location has neither separator known, it can be either bare or a southeast corner.  A bare location has no edges 
impinging on its northwest corner.  It must be both northernmost and westernmost since it has no other edges with which to 
connect.   

Since it can connect to the boundary corner to its northwest, a southeast corner location can have a separator along its 
western edge, its northern edge or both.  Further corner location disambiguation information is supplied by the encoder to 
differentiate between the three possibilities.  Disambiguation takes at most two binary decisions.  The first decision is both 
chains or one.  If one, the second decision is north or west. 

Table 8.1 summarizes the stroke location contexts and defines abbreviated names. There is no information associated with 
the le context; these pixels are not possible stroke locations.  The skew of the lb context is typically much higher than that of 
the ls, lc, or lt contexts.  On Figure 8.1, strokes one and four have lb locations.  Strokes two and three have ls locations.  
Stroke five is lt and stroke six is lc.  Stroke six is also lc2 since it is a corner location and has two associated separators.  One 
additional decision is made for this stroke location. 

Figure 8.2 is a graphical representation of the stroke location contexts.   A filled square represents the pixel associated with a 
possible stroke location.  A filled circle represents the associated separator lattice intersection.  Separator sites are shown as 
solid lines, dashed lines, or invisible lines.  Solid sites are known to contain a separator and are designated full.  Invisible 
sites are not yet known to contain or not contain a separator.  Dashed sites are irrelevant (“don’t care”). 

8.2. Stroke Chains 

Every stroke location has a separator along either its 
northern edge or western edge or both.  If a stroke 
location already has one of its separators known from a 
previously decoded stroke, it has only one stroke chain 
that starts in the direction of the just decided edge. 

Stroke locations that are lb or lc2 with two separators 
can have one or two chains.  The chain starting along 
the stroke location’s western edge and heading south is 
decoded first.  If that chain is not closed, a second chain 
is decoded starting along the northern edge and heading 
east.  A closed chain returns to its start location heading 
in the opposite direction from its outset.  The chain 
starting to the south is also called the clockwise chain 
and the eastern heading chain is correspondingly the 
counterclockwise chain. 

Stroke chains are three direction chains: left, right 
straight.  Typically, each chain follows the periphery of 
a single domain.  Therefore, each counterclockwise 
chain has slightly more left turns and each clockwise 
chain has slightly more right turns.  For example, a 
closed counterclockwise chain has four more left turns 
than right turns. 

To take advantage of this statistical disparity, one option 
would be to keep track of separate statistics for 
clockwise and counterclockwise chains.  However, since this halves the number of decisions in each context, sparse contexts 
become even sparser and may never develop good probability estimates.  A small trick solves this problem.  Instead of 
turning left and right, each chain turns inward or outward.  An inward decision is a left turn for a counterclockwise chain and 
a right turn for a clockwise chain.  Outward decisions correspondingly equate to right and left. 

Our three way decision is now:  in, out, straight.  This three-way decision is transformed to two binary decisions via a two 
level coding tree.  The first decision differentiates between straight and turn.  If the first decision indicates a turn, the second 
decides between in and out. 

uccw first decision of a ccw chain 
ucw first decision of a cw chain 
is previous straight, in prior to that 
os previous straight, out prior to that 
is*i in, zero or more straights, in prior to that 
os*o out, zero or more straights, out prior to that 
is+o out after at least one straight, in prior to that 
os+i in after at least one straight, out prior to that 
iss+ at least two previous straights, last turn in 
oss+ at least two previous straights, last turn out 
oi previous in, out prior to that 
io previous out, in prior to that 
oi(oi)+ oi repeated more than once 
io(io)+ io repeated more than once 
(io)+i ii with at least one included oi 
(oi)+o oo with at least one included io 
(oi)+s special case of is  
(io)+s special case of os  
(oi)+ss+ special case of iss+  
(io)+ss+ special case of oss+  

Table 8.2 
Stroke Chain Contexts 



The probability estimation contexts used to reduce the information content of stroke chains are shown in Table 8.2 (actually, 
each line in the table corresponds to two decision contexts, one for each level of the coding tree).  A simple state machine 
determines the context used to code each chain direction.  Where appropriate, the states are named using regular expression 
notation with the letters s, i, and o, corresponding to straight, inward, and outward respectively. 

These contexts are designed to capture the statistics of raster drawn lines and curves.  The main point to note is that they are 
not simply encodings of the last few chain directions.  They are full boundary states as the regular expression notation 
suggests.  Arbitrary length prefixes with the proper structure can specify a context.  For example, several contexts end in ss+ 
and their purpose is to differentiate straight sections that are known to be long (two or more straight events) from those that 
are not yet known to be long.  Regardless, of the length of the straight section, the preceding turn structure is part of the 
boundary state. 

8.3. Stroke Chain Termination 

Perhaps the most distinguishing feature of the stroke code is its mechanism for terminating stroke chains.  The key idea is 
that encounters with previously decoded boundary separators or with the image boundary are the only way to terminate 
stroke chains.  A decision is made at every encounter as to whether or not to continue the chain.  The different types of 
possible encounters are illustrated in Figure 8.3 for an example northward heading counterclockwise chain 

We now make some observations about each 
type of encounter.  Since each chain must 
terminate by encountering a previously 
decoded boundary, only one hanging end 
encounter is possible:  an encounter with the 
beginning of the current chain.  Four-way 
junctions are unambiguous encounters.  There 
is no empty exit path and a chain must 
terminate.  A tee junction has one possible exit 
path, but depending upon the method used by 
the encoder to generate strokes, it may never be 
taken.   A corner junction may be constrained 
inward or outward.  An inwardly constrained 
corner has a single possible exit in the inward 
direction.  An outwardly constrained corner has 
an analogous exit in the outward direction.  Again, depending upon the method used to generate strokes, the outwardly 
constrained exit may never be taken. 

Looking back to Figure 8.1, we can see some example encounters.  Stroke 1 is closed and therefore makes a hanging end 
encounter with itself.  Stroke 2 makes a constrained outward encounter with stroke 1 and terminates.  Strokes 3 and 4 have 
terminating tee encounters with stroke 1.  Stroke 5 makes a constrained inward encounter with stroke 1 and a constrained 
outward encounter with stroke 3.  Stroke 6 has two encounters with the image boundary.  Encounters with the image 
boundary are always terminating. 

A probability estimation context is kept for each type of boundary encounter.  On sparse partitions, boundary encounters are 
fairly infrequent and those that do occur are frequently terminating.  Further, the encoder can arrange for higher skew 
statistics in some contexts.  For example, if certain rules are followed by the encoder, tee and constrained outward encounters 
may never be continued.  Taken together, these characteristics make stroke termination information a negligible portion of 
the total code string for sparse and even substantially detailed partitions. 

9. EXPERIMENTS 

To place the new codes in context with other pixel based codes, several experiments were performed with color-map, edge 
map and outline map representations. Because of the redundancy introduced by composition it was deemed unnecessary to 
include codes relying on it. This decision completely excluded  codes based upon the perimeter map from the results. The 
experiments were run on the synthetic geometric partitions documented in section 4. These partitions both cover a wide 
range of detail levels and allow comparison with object based codes. 
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Figure 8.3 
Stroke Chain Termination Contexts 



Three different representations of each partition resolution were coded using LZ’778 dictionary coding and JBIG bilevel 
image compression9. The results of these reference experiments are summarized in Table 3. All data are byte counts and 
exclude any file header overhead. 

Several things can be noted from the data. First, given a large enough partition, context conditioned arithmetic coding 
performs far better than dictionary coding. In fact, the asymptotic ZIP performance is proportional to the number of partition 
pixels, whereas the asymptotic JBIG performance is proportional to the number of full separator sites. 

One somewhat surprising result is that outline JBIG is the best performer at two intermediate resolutions. This despite the 
fact that this representation requires twice the number of binary decisions as the other two. This is because providing all 
information in a single context model is vastly superior to separate horizontal and vertical models. 

Another interesting result is that at the highest resolution, map colorings are compressed significantly better by JBIG but 
worse by ZIP. The ZIP difference should not be surprising in that the number of dictionary entries necessary to encode runs 
of a single color is less than the number of dictionary entries necessary to encode runs of more than one color. The JBIG 
difference is due to the separate coding of each bitplane. The edge map does not hold up well when separated, especially for 
non-diagonal but sloped linear features.  

Comparing these results with the 163 bytes necessary to code the object based representation of the geometrical image shows 
that   is approximately 20 for all of the reference compression methods. This means that for partitions with an average 

feature size much greater than 20, object based coding would outperform any of the reference methods. 

The coding results for the new raster neighborhood and stroke codes are shown in columns 2 and 4 of Table 4. The 
experimental coders are based upon Don Speck’s carry-free binary arithmetic coder10 augmented with LPS 345 
adaptation11.  

Both codes perform far better than the reference methods. 
The stroke code is the superior of the two especially at 
higher resolutions. This is because the model used by the 
stroke code is more effective for large features. Note  is  

approximately 80 for the raster neighborhood code and 
roughly 160 for the stroke code. The associated byte count 
at the   resolution is boldfaced in the table. The results are 
remarkable considering the canonical nature of the 
competing object description. 

Note that the number of decisions (columns 3 and 5 of the 
table) made by both codes is roughly equivalent to the 
number of pixels plus the number of full separator sites. This is the main reason for their overall success.  

The experimental data given here do not give a complete picture of the relative performance of the raster neighborhood and 
stroke codes. The model used by the raster neighborhood code exhibits very good performance on partitions that are quite 
dense. This is because all local shape information is effectively used to make coding decisions. The performance of both 
codes on a corpus of image partitions derived from multiple sources is the subject of a future paper. 

Size Color Zip Edge Zip Outline Zip Color JBIG Edge JBIG Outline JBIG 
32x32 127 147 176 131 152 165
64x64 224 294 344 239 293 232
128x128 452 604 738 340 436 300
256x256 1013 1456 1729 399 604 446
512x512 2762 3073 3987 562 982 718
1024x1024 10467 7751 12969 838 1711 1,275

Table 3 
Reference Compression Methods 

Size Raster Stroke Decisions 
32x32  50 46 1118 1119
64x64 86 68 4264 4286
128x128 141 99 16707 16762
256x256 250 158 66161 66283
512x512 475 253 263408 263644
1024x1024 971 429 1051095 1051573

Table 4 
New Methods 



10. CONCLUSION 

One of the main contributions of this paper is to show the relationship of image partitions to map-coloring. The map-coloring 
and three other partition representations, the edge map, the outline map, and the perimeter map are developed. These 
representations are used to show the equivalence of partition and image coding. Partition coding schemes are classified into 
object and pixel based methods. A technique for comparing the performance of the two families is developed. The technique 
is used to motivate the development of two new pixel based partition coding algorithms. 

The new methods are based upon binary arithmetic coding and context modeling. The first method uses a raster 
neighborhood edge model. The second method uses chain coding and a boundary state model. Both models minimize the 
required number of binary decisions. The methods are compared with each other and with several reference compression 
schemes. The new methods exhibit excellent compression performance. Remarkably, the average feature size at which these 
codes should be expected to outperform object based codes is at least 40-80 pixels. 
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