
Header for SPIE use

Image Partition Boundary Coding

Paul J. Ausbeck Jr. a

Department of Computer Engineering
University of California
Santa Cruz, CA 95060

ABSTRACT

This paper introduces two image partition boundary coding models that are composed solely of binary decisions. Because of
their simplified decision structure, the models can take advantage of various accelerating schemes for binary arithmetic
coding. The number of decisions necessary to describe a partition using either model varies between one and two per pixel
location and is proportional to partition complexity.

The first model is a binary decomposition of Steve Tate’s neighboring edge model. The decomposition employs boundary
connectivity constraints to reduce the number of model parameters. The constraints also reduce the number of descriptive
decisions to just over one per pixel for typical partitions. A theoretical zero order entropy bound of 1.6 bits per pixel also
results.

The second model represents a partition as a sequence of strokes. A stroke consists of one or two three-way chains. Chain
termination is accomplished without redundant boundary traversal by using a special termination decision at encounters with
previously drawn chains. Chain initiation decisions are also conditioned on previously drawn edge patterns. Chain direction
decisions are conditioned via a boundary state machine.

The paper compares object based boundary coding and pixel based coding, placing the new coders into the latter category. A
technique for determining the appropriate application domain of pixel based codes is developed. The new coding models are
placed into context with previous pixel based work by the development a new categorization of image partition
representations. Four representations are defined, the map coloring, the edge map, the outline map, and the perimeter map.
Experiments compare the new methods with other pixel based methods and with a canonical object based method.

Keywords: contour coding, boundary coding, image segmentation, map coloring, image partition, chain coding, edge map,
outline map, perimeter map

1. INTRODUCTION

The image partition has traditionally been closely linking with the idea of image segmentation. More recently, the partition
has been separated from any particular segmentation method and found use in its own right. For example, the new MPEG-4
video coding standard1 uses a simple partition coding method for foreground/background separation. Another new use of
partitioning is for compactly representing palette images2. The purpose of this paper is to help define just what image
partition coding is about, and to disclose two new efficient coders.

In the first section, the image partition is defined and related to the long-standing mathematical problem of map coloring.
The partition coding problem is then connected to the image coding problem by the definition of several pixel based partition
representations. Next, a technique for comparing pixel based partition codes with object/vertex codes is developed. Once the
motivation for pixel based coding schemes is clear, one of the pixel-based representations, the edge map, is used as the basis
for two new boundary codes. The first code uses a raster neighborhood decision conditioning template. The second uses a
chain code model. The two new codes are then compared to other image based codes on a synthetic geometric image
rendered at various resolutions. Interpretation of the experiments and conclusions follow.

aThe author is an adjunct researcher at UCSC and cofounder of Netcelerate Software, Inc (www.netcelerate.com). His email
address is paul@netcelerate.com or alternately paula@cse.ucsc.edu.

2. PROPERTIES OF IMAGE PARTITIONS

An image partition is a segregation of the image pixels into related groups. A domain is defined as a related group of pixels
in an image partition. Partitions may be classified according to the shape and topological properties of their domains. A
domain is contiguous if for all pairs of its pixels there exists a path between the pair that traverses only other pixels within
the domain. A domain is rectilinearl- connected if all such paths start at the center of one pixel, make only rectilinear
movements, and make intermediate stops only at the center of other pixels. The algorithms of this paper are designed for

partitions containing only contiguous rectilinearly-connected domains.

One particularly useful method of representing partitions is the map-coloring. A map-coloring of
a partition is an image of the same size as the partitioned image whose pixels have two
properties. First, all the pixels in the same domain have the same color. Second, all adjacent pairs
of domains have different colors. Because all domains must be contiguous and rectilinearly-
connected, a map-coloring is a complete representation of a partition. For example, on the map
coloring of Figure 1 there are five domains: two squares, a rectangle, a circle, and the surround.
Since all domains must be contiguous, even though the circle and rectangle have the same color
they must comprise separate domains. Similarly, since all domains must be rectilinearly
connected, the two squares represent separate domains even though they touch at a corner.

The chromaticity of a partition is the minimum number of colors
necessary to map-color its domains. Figure 1 is an example of a two-
color partition. Two-color partitions allow separation of foreground

from background. Further, if the color assignment is known it is possible to identify foreground
and background given a two-coloring.

Some partitions require three colors and it has long been known that
the general case requires four. That four colors is also sufficient was
not proven until 19773. Figure 2 is a three color example and Figure
3 is a simple four color example.

The two color partition coding problem is equivalent to the
black/white image coding problem and as such has significant
literature coverage. One of the more recent applications of two-color
coding is for foreground/background separation in MPEG41. The three color coding problem
does not yet appear to have been addressed, but it may not have much commercial significance.
The focus of this paper is coding four-color partitions.

3. PARTITION REPRESENTATION

While the map coloring is an important theoretical tool and an excellent medium for partition visualization and distribution,
it is not particularly suited to coding. One problem is that four-colorings are relatively difficult to obtain. Another is that any
code based upon a map coloring will necessarily reproduce the exact original coloring. Since any valid coloring is all that is
necessary to reconstruct a partition, coding a particular coloring is inefficient.

Another representation called the edge map avoids these problems and is often better suited as a base for coding a partition.
In an edge map, pixels are modeled as small squares embedded in a separator lattice. Each pixel has four rectilinearly
adjacent separator lattice sites. A separator lattice site is full if the two adjacent pixels lie in different domains and empty
otherwise. A full separator site is simply called a separator. Since every separator lattice site is adjacent to two pixels, it is
convenient to assign each site to a particular pixel. In this paper, the convention is to assign to a pixel the separator sites to its
west and north. After assignment, two bits per pixel suffice to store an edge map. The low order of these bits is arbitrarily
assigned to the vertical (western) separator site and the remaining bit to the horizontal (northern) separator site. Interestingly,
the edge map has the same storage requirement as the four-coloring, but stores no particular color information. Even more
interesting, as shown later, is that the uncoded storage requirement for typical edge maps is actually significantly less than
two bits per pixel.

Figure 1

Figure 2
Three Color Partition

Figure 3
Four Color Partition

Figure 4 is a detailed rendering of an example edge map. The 22 full separator lattice
sites are modeling with short line segments. For typically sized images, the detailed
visualization method of Figure 4 is unusable. Further, it is desirable for an edge map
visualization to fit into the same size image as the source partition.

Figure 5 is a same size edge map rendering of the 128x128
partition shown in the map-coloring of Figure 3. The possible
edge values of 0, 1, 2, and 3 are rendered with luminance
values of 255, 224, 128, and 0 respectively. The author
believes that this particular method is the best possible for
rendering edge maps at the resolution of the source partition.
Still, it’s not an ideal visualization method.

A true outline rendering of a partition cannot be done at the
source resolution. This is because two pieces of information
must be displayed for each pixel location. Resolution
expansion in a single direction is not effective because it

introduces distortion. Figure 5 is an outline rendering of the map coloring of Figure 3. An outline
rendering is performed at 2x resolution in both the vertical and horizontal direction. For this
example, a 128x128 map-coloring produces a 256x256 outline rendering.

An outline rendering is produced from a map-coloring with the following
algorithm.

 Replace each pixel of the map coloring with a square block of four
white pixels.

 If the map colored pixel is different from its western neighbor, darken
the two leftmost pixels of the corresponding outline block.

 If the map colored pixel is different from its northern neighbor,
darken the two topmost pixels of the corresponding outline block.

 If the map colored pixel is different from the northwestern neighbor,
darken the upper leftmost pixel of the corresponding outline block.

An outline rendering is also a valid partition representation since a
partition can be recovered from it. It’s not optimal for coding because its
size before coding is twice that of both the map-coloring and the edge
map. Even if a coding method could be designed that produced good
compression efficiency, the coding speed would be no better than ½ that
for the more appropriate representations.

The perimeter map representation, shown in
Figure 7, is produced by darkening all pixels that are rectilinear neighbors of pixels in other
domains. The perimeter map is not a valid representation for three-color or four-color partitions.
For example, the single line segment near the top of the partition cannot be distinguished from
several smaller collinear line segments if those segments are separated by fewer than three pixels.
The perimeter map can be used, however, for building up a partition from separate descriptions of
its domains. This process is called partition compositing.

When used as a based for coding, a composited representation is inefficient for partitions requiring
more than two colors. The reason is that all contours that are not foreground/background
separations must be coded twice. For example, The boundary between the two squares of Figure 7
must be coded once for the left square and again when coding the right square. The coding
methods reported in this paper operate on complete partition representations and are designed to avoid the redundant coding
problem.

Figure 4
Edge Map Detail

Figure 5
Compact Edge Map

Rendering

Figure 6
Outline Map

Figure 7
Perimeter Map

4. OBJECT VS PIXEL BASED CODING

Boundary descriptive codes can be classified as either object/vertex based or pixel based. In object based codes boundaries
are described with a relatively small number of fairly complex descriptors. In pixel based codes a relatively large number of
simple descriptors are used. Because object based methods use roughly the same number of bits to describe a feature
regardless of its size, one can expect object based methods to work better for partitions with large features and pixel based
methods to be superior for small features.

The following procedure can be used to empirically determine an average
feature size below which any particular object based method becomes
inefficient:

 Define an object based partition description language that is canonical
for the type of partition being coded.

 Construct a resolution independent description of a reference
partition.

 Using the resolution independent description, synthesize image
partitions at multiple resolutions.

 Compress the resolution independent description with an appropriate
object based method.

 Compress the various resolution image partitions with an appropriate
pixel based method.

 Find the resolution, , where the object based and pixel based
compression methods produce comparable results.

If F is the number of full separator sites in a particular resolution
partition, and N is the number of objects in the resolution independent
description then define:

F

N
. (1)

to be the average feature size of a particular resolution partition. If is

the of the partition then partitions for which should be

better compressed with pixel based codes. Such partitions are designated
freeform.

An example application of this procedure should illuminate it further.
Figure 8 shows an object based partition description using the RTI
geometrical descriptive language. The RTI language has three elements:
R, T, and I. R draws a rectilinear rectangle given two opposing corners. T
draws an arbitrary triangle from its vertices. I draws the contour where
the given algebraic expression is zero or greater on one side and less than
zero on the other. Each element specifies a complete closed contour. The
drawing order is important in that any boundaries enclosed by a later
drawn contour are lost.

When applied to a 256x256 integer grid, the description of Figure 8 produces the partition whose map coloring is shown in
Figure 9. The RTI descriptive language is arguably canonical for this particular reference image. RTI is one dimensional and
is effectively compressed with LZ methods. The ZIP utility compresses the 351 bytes in the description of Figure 8 to 163
bytes.

R(0,0,256,256)
R(0,160,72,256)
R(56,160,72,256)
R(0,160,56,176)
T(56,160,72,160,56,176)
R(144,0,256,256)
T(152,256,255,134,256,255)
R(192,64,256,208)
I((x-64)^2+(y-96)^2-1024)
R(128,32,160,96)
I(2.5*(x-142)^2+3*(x-142)*(y-132)+
 2.5*(y-132)^2-4096)
I(1.0e8*(0.155*(x-128)-0.985*(y-66))^8+
 (0.985*(x-128)+0.155*(y-66))^8-1.667e15)

Figure 8
Geometric Image Synthetic Elements

Figure 9
Map Coloring of a Geometric Image

Instantiating the RTI description at six resolutions produces the separator counts and
 values shown in Table 1. Note that roughly doubles for each 4x increase
partition pixel count. The is because is proportional to the partition’s total
perimeter, not to its total area. Since determination of requires actual data, its

calculation of deferred to the experiments.

5. RASTER NEIGHBORHOOD CODES

The first use of a context model in the coding of edge maps was proposed by Tate4. The Tate model
consists of the eight causal separator sites shown in Figure 10. This model is extremely simple and
produces excellent coding results.
One drawback to Tate’s method is the use of a four symbol alphabet to encode the separator state at
each lattice location. While this strategy successfully brings all relevant information to bear on each
four-way decision, it does not take advantage of advanced acceleration techniques that have been
developed for coding binary alphabets. This section proposes an efficient technique for decomposing
Tate’s four-way decisions into the fewest possible binary decisions.

6. A FAST BINARIZED RASTER NEIGHBOR CODE

A straightforward decomposition of the four symbol edge
map produces two binary decisions for each raster location.
In this discussion, for each raster location the vertical
decision is made first followed by the horizontal decision.
After decomposition, 256 binary contexts are required to
hold vertical decision statistics. In order to bring a previous
vertical decision to bear on its associated horizontal
decision, the number of horizontal decision contexts must
be double the number of vertical contexts.

Since image partitions are not simply random edge maps,
separator lattice connectivity constraints can be used to
reduce both the number of decisions and the number of
conditioning contexts. The fundamental constraint imposed
by separator lattice connectivity is that each end of a
separator must connect with some other separator. For a
raster scan where horizontal decisions are secondary, this
means that many horizontal decisions are completely
determined by previously known separator patterns and
need not be coded.

Two types of previously known separator patterns are
relevant. The first of these is the completely empty separator

lattice intersection. At such an intersection three of the separator sites are known to be empty and therefore the fourth must
also be empty. The second relevant pattern is the separator lattice intersection with a single full site. There are three possible
singleton patterns, N, S, and E, each forcing the presence of a second separator to maintain connectivity.

One consequence of the application of connectivity constraints is that only 256 binary contexts are required to hold
horizontal decision statistics. The other 256 states are deterministic. The second consequence is that for typical partitions,
substantially fewer coded decisions are necessary. If p is the zero order probability that a separator lattice site is full, then

the zero order entropy associated with vertical decisions is

Size Separators
32x32 236 19.7
64x64 481 40.1
128x128 964 80.3
256x256 1938 162
512x512 3899 325
1024x1024 7828 652

Table 1
Object Model Instantiation

L

C

Figure 10

0 0.5 1
0

0.5

11

0

D()p

10 p
Figure 11

Deterministic Horizontal Decision Probability

H p p p p p1 2 21 1() log () () log () . (2)

Given the same p , the deterministic horizontal decision

probability is

D p p p p() () () 1 3 13 2 . (3)

The horizontal decision entropy is therefore

H p D p H pv2 1() (()) () , (4)

and the total entropy is

H p H p H pT () () () 1 2 . (5)

The maximum of HT is 1.607 and it occurs at a full edge

probability of 0.632. D p() is plotted in Figure 11 and HT is

plotted in Figure 12. Note that HT approaches the single

decision entropy, H1 , at low p and approaches the

unconstrained two decision entropy at high p .

7. CHAIN CODES

Chain codes can be divided into two major families, the distinguishing feature being the number of possible directions of
movement at each point in the chain. With the recent application of context dependent probability estimation to four-way
chains5, the desirability of eight-way chains is somewhat attenuated. We focus exclusively on four-way chains.

Three types of information must be provided for a general-purpose boundary chain code: chain starting points, chain
direction information, and chain termination indicators. When coding two-color partitions5, each chain is guaranteed to
return to its starting point. Obviously, no two black features can touch each other or they would be the same feature. This
characteristic allows self-terminating chains, where termination information is implicitly delivered by return to the starting
point.

Reliable termination conditions without backtracking allow for simplified direction information. Only three decisions are
possible at each point on the boundary, turn left, right or go straight. The base information per chain event is reduced from
two to log 2 3 bits. Unfortunately, when chain coding the boundaries of a three or four-color partition, things get more

complicated and some form of redundancy must be introduced.

One way to deal with the termination problem is to composit the partition from individual objects6. If the edge map
representation is used, this results in the overhead of traversing most or all boundaries twice. If the perimeter representation
is used, double traversal and backtracking are necessary. One possible way to avoid these problems is to traverse only right
or left sides of each domain7. This method, however, results in one starting point for each convex boundary section. For
irregular domains, this produces multiple chain starting points per domain.

The ideal boundary chain code should take advantage of connectivity constraints to make between one and two decisions per
pixel location. It should use approximately one starting point per partition domain and should not incur significant chain
termination overhead. The stroke code described next is one such code.

0 0.5 1
0

0.5

1

1.5

22

0

H 2()p

H 1()p

.2 H 1()p

10 p

Figure 12
Total Edge Map Decision Entropy

8. THE STROKE CODE FOR IMAGE PARTITIONS

The stroke code develops a partition via a series of
strokes. Each stroke consists of a start point, and
one or two boundary chains. Each chain of a
stroke is terminated upon encountering a previous
stroke or the image boundary. The key idea is that
encounters with previous strokes may or may not
terminate a stroke. Further information
disambiguates each encounter.

Strokes are decoded in turn: start, chain and
termination information is interleaved in the code
stream. Once the boundary is fully specified via
strokes, domains may be grown by recursively
joining groups of pixels that do not have a
separator between them. Figure 8.1 has seven
domains of 1, 1, 2, 5, 6, 8 and 10 pixels plus the
surround. As can be seen, only six strokes are
necessary to completely specify the boundary
between these domains.

We cover the major elements of the stroke code
syntax from the perspective of the decoder. We
first cover stroke starting points or locations. We then apply context dependent probability estimation to reduce the
information content of stroke chains. Finally, we develop a termination mechanism for stroke chains that almost completely
retains their three-way decision character.

8.1. Stroke Locations

Each pixel in the image is a possible stroke location. The decoder scans the image in raster order and determines whether or
not a pixel is a stroke location. The information associated with this process is called the stroke location information. Each
of the pixels labeled with L in Figure 8.1 are stroke locations.

Each stroke location can have one or two boundary separators. The possible separators are along the northern and western
edges of the associated pixel. Deciding that a pixel is a stroke location conveys additional information about the associated
boundary separator sites. The additional information conveyed depends upon what other separators abutting the stroke
location are already known. The previously known separators associated with a possible stroke location determine the stroke
location context.

If a pixel site is a stroke location and it already has one of its separators known, then the other separator becomes known. If
the separator to the north is already known, the separator to the west becomes known. A stroke location context of this type
is called a top location. Similarly, a side location has its western separator previously known.

Six small domains
plus surround.

Stroke locations
labeled with L

L3L2L1

L4

L5

L6

Stroke 1
Stroke 2
Stroke 3
Stroke 4
Stroke 5
Stroke 6

Figure 8.1
Stroke Example

Either Known or Unknown
Unknown Separator
Known Separator
Corresponding Pixel Site
Separator Lattice Site

lblcltlsle

Figure 8.2
Stroke Location Contexts

Name Determining information
le Two previously known separators (enclosed)
lt One known separator to the north (top)
ls One known separator to the west (side)
lb Zero known separators (bare)
lc Zero known separators (SE corner)
 lc2 SE corner, Decide one or two separators
 lcw SE corner, One separator, Decide N or W

Table 8.1
Stroke Location Contexts

If a stroke location has neither separator known, it can be either bare or a southeast corner. A bare location has no edges
impinging on its northwest corner. It must be both northernmost and westernmost since it has no other edges with which to
connect.

Since it can connect to the boundary corner to its northwest, a southeast corner location can have a separator along its
western edge, its northern edge or both. Further corner location disambiguation information is supplied by the encoder to
differentiate between the three possibilities. Disambiguation takes at most two binary decisions. The first decision is both
chains or one. If one, the second decision is north or west.

Table 8.1 summarizes the stroke location contexts and defines abbreviated names. There is no information associated with
the le context; these pixels are not possible stroke locations. The skew of the lb context is typically much higher than that of
the ls, lc, or lt contexts. On Figure 8.1, strokes one and four have lb locations. Strokes two and three have ls locations.
Stroke five is lt and stroke six is lc. Stroke six is also lc2 since it is a corner location and has two associated separators. One
additional decision is made for this stroke location.

Figure 8.2 is a graphical representation of the stroke location contexts. A filled square represents the pixel associated with a
possible stroke location. A filled circle represents the associated separator lattice intersection. Separator sites are shown as
solid lines, dashed lines, or invisible lines. Solid sites are known to contain a separator and are designated full. Invisible
sites are not yet known to contain or not contain a separator. Dashed sites are irrelevant (“don’t care”).

8.2. Stroke Chains

Every stroke location has a separator along either its
northern edge or western edge or both. If a stroke
location already has one of its separators known from a
previously decoded stroke, it has only one stroke chain
that starts in the direction of the just decided edge.

Stroke locations that are lb or lc2 with two separators
can have one or two chains. The chain starting along
the stroke location’s western edge and heading south is
decoded first. If that chain is not closed, a second chain
is decoded starting along the northern edge and heading
east. A closed chain returns to its start location heading
in the opposite direction from its outset. The chain
starting to the south is also called the clockwise chain
and the eastern heading chain is correspondingly the
counterclockwise chain.

Stroke chains are three direction chains: left, right
straight. Typically, each chain follows the periphery of
a single domain. Therefore, each counterclockwise
chain has slightly more left turns and each clockwise
chain has slightly more right turns. For example, a
closed counterclockwise chain has four more left turns
than right turns.

To take advantage of this statistical disparity, one option
would be to keep track of separate statistics for
clockwise and counterclockwise chains. However, since this halves the number of decisions in each context, sparse contexts
become even sparser and may never develop good probability estimates. A small trick solves this problem. Instead of
turning left and right, each chain turns inward or outward. An inward decision is a left turn for a counterclockwise chain and
a right turn for a clockwise chain. Outward decisions correspondingly equate to right and left.

Our three way decision is now: in, out, straight. This three-way decision is transformed to two binary decisions via a two
level coding tree. The first decision differentiates between straight and turn. If the first decision indicates a turn, the second
decides between in and out.

uccw first decision of a ccw chain
ucw first decision of a cw chain
is previous straight, in prior to that
os previous straight, out prior to that
is*i in, zero or more straights, in prior to that
os*o out, zero or more straights, out prior to that
is+o out after at least one straight, in prior to that
os+i in after at least one straight, out prior to that
iss+ at least two previous straights, last turn in
oss+ at least two previous straights, last turn out
oi previous in, out prior to that
io previous out, in prior to that
oi(oi)+ oi repeated more than once
io(io)+ io repeated more than once
(io)+i ii with at least one included oi
(oi)+o oo with at least one included io
(oi)+s special case of is
(io)+s special case of os
(oi)+ss+ special case of iss+
(io)+ss+ special case of oss+

Table 8.2
Stroke Chain Contexts

The probability estimation contexts used to reduce the information content of stroke chains are shown in Table 8.2 (actually,
each line in the table corresponds to two decision contexts, one for each level of the coding tree). A simple state machine
determines the context used to code each chain direction. Where appropriate, the states are named using regular expression
notation with the letters s, i, and o, corresponding to straight, inward, and outward respectively.

These contexts are designed to capture the statistics of raster drawn lines and curves. The main point to note is that they are
not simply encodings of the last few chain directions. They are full boundary states as the regular expression notation
suggests. Arbitrary length prefixes with the proper structure can specify a context. For example, several contexts end in ss+
and their purpose is to differentiate straight sections that are known to be long (two or more straight events) from those that
are not yet known to be long. Regardless, of the length of the straight section, the preceding turn structure is part of the
boundary state.

8.3. Stroke Chain Termination

Perhaps the most distinguishing feature of the stroke code is its mechanism for terminating stroke chains. The key idea is
that encounters with previously decoded boundary separators or with the image boundary are the only way to terminate
stroke chains. A decision is made at every encounter as to whether or not to continue the chain. The different types of
possible encounters are illustrated in Figure 8.3 for an example northward heading counterclockwise chain

We now make some observations about each
type of encounter. Since each chain must
terminate by encountering a previously
decoded boundary, only one hanging end
encounter is possible: an encounter with the
beginning of the current chain. Four-way
junctions are unambiguous encounters. There
is no empty exit path and a chain must
terminate. A tee junction has one possible exit
path, but depending upon the method used by
the encoder to generate strokes, it may never be
taken. A corner junction may be constrained
inward or outward. An inwardly constrained
corner has a single possible exit in the inward
direction. An outwardly constrained corner has
an analogous exit in the outward direction. Again, depending upon the method used to generate strokes, the outwardly
constrained exit may never be taken.

Looking back to Figure 8.1, we can see some example encounters. Stroke 1 is closed and therefore makes a hanging end
encounter with itself. Stroke 2 makes a constrained outward encounter with stroke 1 and terminates. Strokes 3 and 4 have
terminating tee encounters with stroke 1. Stroke 5 makes a constrained inward encounter with stroke 1 and a constrained
outward encounter with stroke 3. Stroke 6 has two encounters with the image boundary. Encounters with the image
boundary are always terminating.

A probability estimation context is kept for each type of boundary encounter. On sparse partitions, boundary encounters are
fairly infrequent and those that do occur are frequently terminating. Further, the encoder can arrange for higher skew
statistics in some contexts. For example, if certain rules are followed by the encoder, tee and constrained outward encounters
may never be continued. Taken together, these characteristics make stroke termination information a negligible portion of
the total code string for sparse and even substantially detailed partitions.

9. EXPERIMENTS

To place the new codes in context with other pixel based codes, several experiments were performed with color-map, edge
map and outline map representations. Because of the redundancy introduced by composition it was deemed unnecessary to
include codes relying on it. This decision completely excluded codes based upon the perimeter map from the results. The
experiments were run on the synthetic geometric partitions documented in section 4. These partitions both cover a wide
range of detail levels and allow comparison with object based codes.

Last Decoded Separator
Unknown or Empty Separator Site
Known Full Separator Site
Corresponding Pixel Site
Separator Lattice Site

ti
inward
corner

to
outward
corner

t4
four-way
junction

th
hanging end

tt
tee

junction

Figure 8.3
Stroke Chain Termination Contexts

Three different representations of each partition resolution were coded using LZ’778 dictionary coding and JBIG bilevel
image compression9. The results of these reference experiments are summarized in Table 3. All data are byte counts and
exclude any file header overhead.

Several things can be noted from the data. First, given a large enough partition, context conditioned arithmetic coding
performs far better than dictionary coding. In fact, the asymptotic ZIP performance is proportional to the number of partition
pixels, whereas the asymptotic JBIG performance is proportional to the number of full separator sites.

One somewhat surprising result is that outline JBIG is the best performer at two intermediate resolutions. This despite the
fact that this representation requires twice the number of binary decisions as the other two. This is because providing all
information in a single context model is vastly superior to separate horizontal and vertical models.

Another interesting result is that at the highest resolution, map colorings are compressed significantly better by JBIG but
worse by ZIP. The ZIP difference should not be surprising in that the number of dictionary entries necessary to encode runs
of a single color is less than the number of dictionary entries necessary to encode runs of more than one color. The JBIG
difference is due to the separate coding of each bitplane. The edge map does not hold up well when separated, especially for
non-diagonal but sloped linear features.

Comparing these results with the 163 bytes necessary to code the object based representation of the geometrical image shows
that is approximately 20 for all of the reference compression methods. This means that for partitions with an average

feature size much greater than 20, object based coding would outperform any of the reference methods.

The coding results for the new raster neighborhood and stroke codes are shown in columns 2 and 4 of Table 4. The
experimental coders are based upon Don Speck’s carry-free binary arithmetic coder10 augmented with LPS 345
adaptation11.

Both codes perform far better than the reference methods.
The stroke code is the superior of the two especially at
higher resolutions. This is because the model used by the
stroke code is more effective for large features. Note is

approximately 80 for the raster neighborhood code and
roughly 160 for the stroke code. The associated byte count
at the resolution is boldfaced in the table. The results are
remarkable considering the canonical nature of the
competing object description.

Note that the number of decisions (columns 3 and 5 of the
table) made by both codes is roughly equivalent to the
number of pixels plus the number of full separator sites. This is the main reason for their overall success.

The experimental data given here do not give a complete picture of the relative performance of the raster neighborhood and
stroke codes. The model used by the raster neighborhood code exhibits very good performance on partitions that are quite
dense. This is because all local shape information is effectively used to make coding decisions. The performance of both
codes on a corpus of image partitions derived from multiple sources is the subject of a future paper.

Size Color Zip Edge Zip Outline Zip Color JBIG Edge JBIG Outline JBIG
32x32 127 147 176 131 152 165
64x64 224 294 344 239 293 232
128x128 452 604 738 340 436 300
256x256 1013 1456 1729 399 604 446
512x512 2762 3073 3987 562 982 718
1024x1024 10467 7751 12969 838 1711 1,275

Table 3
Reference Compression Methods

Size Raster Stroke Decisions
32x32 50 46 1118 1119
64x64 86 68 4264 4286
128x128 141 99 16707 16762
256x256 250 158 66161 66283
512x512 475 253 263408 263644
1024x1024 971 429 1051095 1051573

Table 4
New Methods

10. CONCLUSION

One of the main contributions of this paper is to show the relationship of image partitions to map-coloring. The map-coloring
and three other partition representations, the edge map, the outline map, and the perimeter map are developed. These
representations are used to show the equivalence of partition and image coding. Partition coding schemes are classified into
object and pixel based methods. A technique for comparing the performance of the two families is developed. The technique
is used to motivate the development of two new pixel based partition coding algorithms.

The new methods are based upon binary arithmetic coding and context modeling. The first method uses a raster
neighborhood edge model. The second method uses chain coding and a boundary state model. Both models minimize the
required number of binary decisions. The methods are compared with each other and with several reference compression
schemes. The new methods exhibit excellent compression performance. Remarkably, the average feature size at which these
codes should be expected to outperform object based codes is at least 40-80 pixels.

11. REFERENCES

1 Jorn Ostermann, Euee S. Jang, Jae-Seob Shin and Tsuhan Chen, “Coding of Arbitrarily Shaped Video Objects in MPEG-4”, ICIP 98, Santa

Barbara, 1998.

2 Paul Ausbeck, “Context Models for Palette Images”, Proceedings of the Data Compression Conference, Snowbird, Utah, 1998, pp. 309-318.

3 K. Appel and W. Haken, “Every planar map is four colorable”, Contemporary Math. 98 (1989).

4 Stephen R. Tate, Lossless Compression of Region Edge Maps, CS-1992-9, Department of Computer Science, Duke University, Durham, NC,
1992.

5 Robert R. Ester, Jr. and V. Ralph Algazi, “Efficient error free chain coding of binary documents”, Proc. Data Compression Conference,
Snowbird, Utah, March 28, 1995, pp. 122-131.

6 Martin J. Turner, “Entropy Reduction via Simplified Image Contourization”, NASA Space and Earth Science Data Compression Workshop,
Snowbird, Utah, March 27, 1992, pp. 27-42.

7 Christophe Oddou , “Device for Encoding One Contour Side of Segmented Images, and Decoder Therefor”, U.S. Patent 5,459,513, Oct. 17,
1995.

8 PKZIP for Windows, SHAREWARE Version 2.01, PKWARE, Inc.

9 Markus Kuhn, Version 0.9 of the JBIG–KIT, available via anonymous ftp at ftp.informatik.uni–erlangen.de/pub/doc/ISO/JBIG/jbigkit-
0.8.tar.gz.

10 Don Speck, “Local Activity Level Classification Model for Continuous–tone Coding”, document N198 submitted to ISO/IEC
JTC1/SC29/WG1 June 29, 1995.

11 Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black–White Images with Arithmetic Coding”, IEEE Transactions on
Communications, Vol. COM–29(6), pp. 858–867 (June 1981).

