UNIVERSITY OF CALIFORNIA

SANTA CRUZ

Piecewise-Smooth Modeling of Digital Images

A thesis submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER ENGINEERING
by
Paul J. Ausbeck, Jr.

June 1996

The Dissertation of Paul]. Ausbeck, Jr.
is approved:

Professor Glen G. Langdon, Jr., Chair

Professor Pat Mantey

Professor Richard Hughey

Dean of Graduate Studies

Table of Contents

1. INEEOAUCHON ettt sttt 1
2. Canonical Piecewise Smooth EXample ..o 3
2.1 MOdE]l EXTACHON coucuieieiriciciceieietcieicieseiea e ss st sss s ssssanss s s 4

2.2 MOAEL COAINE ...t 7

2.3 CodINg EXPErIMENTS....c.iuiiiiiiiiiiiiiitcrisss s sssssssssssssssssssssss s s sssssssssssssssssssssssnssssens 12

3. Moments of Two Dimensional Domains.........cc.cciuirinimniciicsscss s 13
3.1 A DAZIESSION et 13

3.2 MOMIENLS ..ottt bbb bbbt 13

3.3 Domain OPeratioNS.......cuicuiiuniciiiiciiicii st ssss s ssssssaaes 15

3.4 The Two Dimensional LiNear SYSteM......cceuiuercurieemeunieemeinieeieneeeneseeenessteensessesesessesesses 15

3.5 Second and Third Order SYStEMSc.vuiviviuiiiiiieireieieieeeese e sse s sasaeans 16

3.6 Solving Least SQUALES SYSLEIMScuvuiuiuiiuiieiiiieieiiie et ssse st sssenees 17
3.6.1 Closed Form Solution for the Linear Problem........ccccvvcinivicnincninicincnicnnn. 17

3.6.2 Cholesky Factorization of Symmetric Positive Semidefinite Systemsceeeee. 18

3.7 BALOL FUNCHON oottt 26

3.8 SPACE/ PLECISION ISSUECS......cuueumrerireirriiirerieierieiseasesaeie et s e sisessesssessesseesssasesssessessssessens 27

3.9 SUMMIALY .ottt 28

4. Domain EXIACHON ...cvucvcicicicictcictstcss ittt sttt sa s 29
4.1 MOTIVALON ..ttt 29
4.2 BaCKGIOUNG ...t 29

4.3 Greedy Domain GrOWING ..o 31

4.4 TMPIEMENTATION c..cvvvuiriiicrcteret et ss et ssass s 32
R 01073 T o OO 32

4.4.2 AIGOTITRIMNS ..ot 34

4.5 PrOOL Of COLTECHAESS .uvuvucvuieiacrieieiieeieieie ittt s sse s s st ssae s sssasesesaesacs 39
4.5.1 DEfINITIONS w.oovverieriricirieciiscis s ss s ss s s sst s asns 39

4.5.2 OVEIVIEW oottt 39

4.5.3 DELALS ..ot 39

4.6 Algorithmic COMPIEXILY c..coucvivieiiiiiiiiiici s sanses 41
4.6.1 Dynamic Size LIMItiNg.......cocviuriviiirimiiriiiiiniiiiiiecssnsisssssssssssssssssssssssssssssssens 43

AT SUMMIALY ..ot sa s 43

5. DomMain SMOOTNINGocuieiiiiciiiiciriie e 45
5.1 MOUVALION ..ttt bbbt 45

5.2 BaCKEIOUNA ..o 46

5.3 Boundary State MaChifne.......c.ccuveuiuiuiiniiiieiiiecieciseiceceeeessesse e sssesenes 46

5.4 RASTEIIZAOMN. ..ottt bbb 47

5.5 Boundary Cost FUNCHON ...t sssssssnes 48

5.6 Smoothing TransfOrMAtiONSc.cuuiicieiieicieieie s sssnes 49

5.0.T IMOVE SELS cuviniieiiniitieeieteeieet ettt stes e sstetes e sessessessesasentestensessessessesssentensensensessessonsonsonns 50

5.6.2 Limiting Move Depth ..., 51

5.7 DetefMININgG AD ..ccoueeeiiueieneceeeeeeeiseeesseesse s s eseess e sssse st ss e st ss st seas 52
5.8 DetefMinIng Aloiveueiieceireciieieieeciieeeiseesise st esssesssse st sse st sseesees 53
5.8.1 Diagonal SEPALALOLScuuuuieieiuiiiiiiiiieiiiseissisesie s sssssssssssns 54
5.8.2 Boundary Length ACCOUNTNGovuvuiieierieierieiirierieeieeeieisesienseeseeesssessessesssssessssenenns 55

5.9 CONVELZEIICE .cueriuirieiriiiieieiiieiseieiet ittt bbbt 56
5.9.1 Interfering DOMAINS. ..o 56
5.9.2 Subtractive INterferenCe ... 57
5.9.3 Summary of Convergence RequireMents.......cccvuvieuiurieiriiniciniinicinisieicsieseeeinnns 58
5.10 COLLECINESS ucvuiuuiuvrieiiiiieiiieisessieeiet e sss sttt et s b 58
5.11 Computational COMPIEXILYcuvvrvivimieiiiiiiiiiriiissss s sssssnes 59
I B o V74 T o 1R 60
5.13 EXPEIIMENLS ...ttt st 60
5.14 SUMMALY c..veiiiiiiiiiiciiictie ettt bbb 65
6. Domain Boundary Codinguiiiiiiiiiiissssssssssssssssssssssssssssnsssssnes 67
0.1 BaCKGIOUN ... 67
0.1.1 Chaint COAING ..o 67
6.1.2 Raster Neighborhood Coding..........ciiiiciiiccccce e 68

6.2 A Boundary Partition Classification ... 69
0.3 Chain Coding vVia StIOKESccuiuiviiiiiiiieiicicici e 70
6.3.1 BINary DECISIONScuiiuieiiiiiiciiiiii s sssssnes 71
0.3.2 Stroke Start POINESc.ccuieciiiiciciiciici s 72
6.3.3 Stroke Chain TermINation.....ccceeueurieireurierierieiieeiesseeesessesesessssesessseesessssessesssseses 74
0.3.4 StrOKE CRAINS. ...t ses 75

0.4 EXPEIIMENLS ..ottt 76
0.5 SUMMIALY ..ottt bbb 80
7. Geometry Implicit Coding of Two Dimensional Polynomials...........cccccovuviiivininininininninnn. 81
7.1 BaCKGIOUN ..o 81
7.2 Sentinel Points and Polynomial ReCONStIUCHONuvuvuruieierieierieieriieierineeesereeesensseseneenes 32
7.3 Choosing Sentinel POINLS.......c.cucuiiciiiiciiicicicieiciei st sssessesanes 83
7.3.1 Zieto Ofrder SYStEML....cuuiuiiiiiiiiiiiiciiiiciisssss s sssans 83
7.3.2 FILSt OFdEr SYSTEIM cuccvuiuieieciiieieiiieicieeeeicieeieiesseie bbbt sese et sese st sesesscssenas 84
7.3.3 SecoNd OLder SYSLEM ..euvuuivrivieieiiiiieririeeieesei et ssasssesesesssessssse s s ssesssssenes 86
7.3.4 Third Order SYStEMcuvuiiiiciiiiiciiicee e seas 89
7.3.5 EXAMPIES ...t 91

7.4 Sentinel Points of Under-Constrained Domains ..., 93
7.5 (QUANTIZALION ..ttt ettt ettt ettt b bbbttt sttt et b ettt etaens 94
7.5.1 Variable QUANTIZATION c.cuvuruevrereririirieeeteieiseeeeeteteee et esessese st eesssssesssssssssassssssesesssssas 97

7.6 Optimizing Quantized Sentinel Point Values ... 99
7T COAING ..ot 99
7.7.1 Quantization MOAELc.vuiueirieiriiieiriieireeieieeisiee sttt ssssesseaes 100
7.7.2 PLEAICHOMN ..t 100
7.7.3 EXPEIIMENLS...cviriiiininiiieiciie st sss s ssss s sss s sss s sssa s sasas s ssssssans 101

8. Coding EXPEIIMENLSuuvuiuieieiiiiiiiiiiieieie e sss s sss s sssssssssssasnes 103

iv

8.1 Generating Piecewise-Smooth Image Models.........cccuiueieiiicicisininiiiinieieieieias 103

8.1.1 Codet PerfOIrMANCEcvevevevevieieieeeeereeereteeteteesees ettt esesesesesesesessnsnsasasanene 106

8.2 Coding the Image MOdel.........ccoiiiiiiniciiiciiciicrce e 107
8.2.1 Decoder PetfOrNanCEe.......cvcveveeeeeeieeeeteeeeteeeeteeeteree e sere s s sessesesessseressenesens 109

B.3 IDALA cuiveeeceeeteeee ettt bbb bbbt b et bbbttt as s s et et etets s asasanane 109

8.4 Sample PArtitiONSccuciuieciiiiciiiciii s 111

8.5 JPEG COMPALISON....uiiiiiiiiiieiiieieieiseieiie sttt ssse s sse s s s sssessesas 114

8.0 SUMMALY c..evriviieiitiitii ettt b bbb b 116

0. CONCIUSION ...t evevevetetetieteteteseretete ettt s s se bbbt s s bbb esebesesessasasas s s esesebesesasessasastesesesesessasasasasasans 117
9.1 Mainl CONLIDULONS .veveveveveeieiieeeerererereteteeeeeeesese e etess e s s s esesesesesssssssssssesesesesesesssesmsnsasane 117

0.2 FULUTE WOTK ottt et et st eas s et ese s s enssennsesessasesens 118
0.2.1 MOAEl EXTTACHON o.veiveteeeevetieeeretetetetee ettt eresesesesseseressesesessesesensesesensenesnen 119

9.2.2 MOdel COAING....uvuviiriririiiiiiciiiiiesse s ssanees 119

0.2.3 EEXTEIISIONS. . veuvevetiiereteteteseereteseseseseesesesesesesesessesesessesesesseseseasesesassesessasesessasesensasesasesesenes 120

10, RELEIEIICES .vnivevieeereteeeteteeetete ettt ettt a ettt es et ebe s e s et ensesesensesesensesesnseseseasesetensesesenee 121

List of Figures

Figure 2.1 Synthetic Image SYNT5.......ciiiiiisssss s 3
Figure 2.2 Domains Extracted from SynT5......ccciiiiiiniiiisiisissssisie s 5
Figure 2.3 Synthetic Image SYN10........cccviiiiiiiniiiii s 0
Figure 2.4 Initial Domains Extracted from Synlo ... 6
Figure 2.5 Syn16 Domain Extraction with Noise Suppression ..., 7
Figure 2.6 Smoothed Syn16 Domains ... ssessesssssenes 7
Figure 2.7 Implicit COAe POINLScuvuieieiiriiieiiiiiiiiiieieieii e ss s s ssessssessssssssesssssenas 9
Figure 2.8 Decoder Reconstruction, QS = 04........cccuviieininiciniiricinieiciieieiseisiesssiesessssesessssesennes 9
Figure 3.1 Zero Propagationiiiiiiiiiissssssssssssssssssssssssssssssssmsssssssssnes 22
Figure 3.2 Sample DOmAaINS.......cviiiiiimiiiiiiiiic s 23
Figure 4.1 Traveling a Domain Boundary..........c.cciininnniceseeeeseisensesenseseseees 35
Figure 4.2 HOle DISCOVELY ...t 36
Figure 4.3 Greedy Domain Extraction AIgOfithmccccviiiivininininininniccccnn: 38
Figure 5.1 Irregular BOUNAALY ... sesnes 45
FIGULE 5.2 MOVE SELS...cuvuiiiiiiiiiiiiiiiiii s 51
Figure 5.3 Perceived Boundary Length ... 54
Figure 5.4 Boundary Length ACCOUNtNG........coviivimrimiiiiiiiiiiiissss s 55
Figure 5.5 Interfering DOMAINS ... sassnnes 57
Figure 5.6 Connection Hulls.........ccoccuiiiiiiiiiiiiiiiiiic e 59
Figure 5.7 Synthetic IMage SYyn4..........ccciiiiiiiniicicece e 62
Figure 5.8 Four Domain Partition of Synd..........cccviccsscsssnes 62
Figure 5.9 Smoothed SYnd, 0L = 250 03
Figure 5.10 Smoothed Synd, 0L = 512 ... 63
Figure 5.11 Smoothed Synd, 0L = 1024......c.cmiecceeeee e 03
Figure 5.12 Smoothed Synd, oL = 8192......ccoiiiiiienes 63
Figure 5.13 Smoothed Syn4, o = 100000cccuivemmemiiirrerecieereeseeeeese e sesesesesesesenes 04
Figure 5.14 Smoothed Syn4, Restorative mode, 0 = 1 ..o 64
Figure 5.15 Unsmoothed 100 Domain Lena.........ccciiiiineinieiiieecieceeissenssssssensnenes 65
Figure 5.16 Smoothed 100 Domain Lena, 00 = 1024.....c.cooeiiiiiiniiiiiriciricccsieeceeiees 65
Figure 6.1 Stroke EXample........ccoviiiiiiiiiiiincssssssssssssssssssssssssssssnes 70
Figure 6.2 Boundary and Stroke Start Points 100 Domain Lena ..., 74
Figure 6.3 Boundary and Stroke Start Points 3200 Domain Lena ... 74
Figure 6.4 Stroke Code vs Q-Code Smoothed and Unsmoothed Lena.......cccocvcivicininicincnnaes 80
Figure 7.1 Zero Order Sentinel Points for Synl5......cciiiiicccccicne: 91
Figure 7.2 First Order Sentinel Points for Syn15 ... 91
Figure 7.3 Second Otrder Sentinel Points fOr SYN15 ... 92
Figure 7.4 Third Order Sentinel Points for Synl5 ... 92

vi

Figure 7.5 Third Order Sentinel Points for a 100 Domain Lena.........ccocvcvveviincincincrncinenncinennennn. 93

Figure 7.6 Third Otder Sentinel Points for an 800 Domain Lena ... 93
Figure 7.7 Quantization Noise Uniform vs 31 Order Lena......ccevueceeiencenieneeneeeeeeeeeceeceeennns 97
Figure 8.1 Decoder Functional DIagram ... 108
Figure 8.2 Domain Boundaries 200 Domain Lena ..o 112
Figure 8.3 Domain Boundaries 100 Domain Cameramanccceeeceeuneeerneerercmnensensensensensennes 112
Figure 8.4 Domain Boundaries 400 Domain Cameramanoccuveeeeuneeinemnicinensicnnineiennenes 113
Figure 8.5 Domain Boundaries 400 Domain Baboomn..........ccvvvniiniiiniiniicccicnns 113
Figure 8.6 Domain Boundaries 100 Domain Miss AMELICAccuiviviirivnivierniininniineniieneciennanes 113
Figure 8.7 Domain Boundaries 200 Domain Miss AMELICAcecveeerierirncererniirerneirereinenseesennenes 114
Figure 8.8 Rate Distortion Comparison MiSS AMELICA ..c.cuveeuivrieiiurieieirieiiisieiessesesessssessenes 115
Figure 8.9 Rate Distortion Comparison Lena ... 115
Figure 8.10 Rate Distortion Comparison Cameraman ... 115
Figure 8.11 Rate Distortion Compatison Baboon ... 115

vil

Piecewise-Smooth Modeling of Digital Images

Panl |. Ausbeck Jr.

Abstract

We introduce the piecewise-smooth image model. We develop efficient algorithms for model
extraction and representation when the smooth model component is limited to third order
two-dimensional polynomials. We apply the model to lossy image coding and compare its rate-
distortion performance against the JPEG image compression standard. On some images
tested, the piecewise-smooth code outperforms JPEG by a wide margin, and it is never

significantly inferior.

As byproducts, we introduce moment operators to aid in multidimensional piecewise-smooth
surface fitting. We extend the Cholesky factorization of symmetric positive definite matrices to
symmetric positive semidefinite matrices. We develop a general image segmentation algorithm
that outperforms any previously reported method. We introduce the raster-break measure of
boundary noise and apply it to a fast state-machine boundary smoother. We develop the
stroke method for chain coding contours. It is the first method to efficiently solve the three-
direction chain termination problem. We develop the method of sentinel points for minimally

coding polynomial surfaces over arbitrary two-dimensional domains.

viil

Acknowledgments

The author wishes to thank his advisor, Glen G. Langdon, Jr., for his enthusiastic support and

his direction in finding a dissertation topic.

ix

1. Introduction

Despite considerable efforts over a long period, the theory and practice of segmentation
remained primitive for two reasons. First, it was well-nigh impossible to formulate precisely in
terms of the image or even of the physical world what the exact goals of segmentation were.
...David Marr, Vision (7982)."

In introducing his idea of the 2'2-dimensional sketch, Marr presented a simple image of two
leaves that gave vision to his belief that the idea of segmentation was bound to fail. We won’t
reproduce that image here, but in the next chapter we introduce a synthetic benchmark
problem with identical characteristics. That benchmark is the real introduction to the piecewise-

smooth image model.

For now we will be content to say that the piecewise-smooth image model lays a mathematical
foundation for the image segmentation problem. Because of this, we use different
segmentation terms than those with which the reader may already be familiar. We refer to a
segment or region as a domain. We refer to the segmentation process as #odel ot domain
extraction and to the resulting segmentation as a an izage partition. We apologize in advance if by

Chapter 9 the reader does not appreciate the use of these terms.

Image segmentation is really only the lowest level attack on the problem of image understanding.
The fundamental importance of the piecewise-smooth model to image understanding can be
most easily understood by relating it to the problem of realistic image synthesis. All of visual
cues” that allow us to give life to a synthetic scene are either piecewise-smooth intensity
processes or texture processes linearly interacting with an underlying piecewise-smooth model.
The example presented in Chapter 1 clearly shows how even simple smooth intensity processes

give depth and character to an image.

The piecewise-smooth image model canonically represents two of the most important
perceptual elements of an image: smoothly varying intensity patches and step intensity
discontinuities. Further, if the piecewise-smooth image component is captured and isolated,

the remaining small-scale or texture component can be more easily analyzed.

In Chapter 2 we develop a simple problem example as an overview of the piecewise-smooth
image model. The moment operators of Chapter 3 enable the greedy domain-growing model
extraction algorithm of Chapter 4. In Chapter 5 we define the raster-break as a formal measure
of boundary noise and use it to develop a state-machine boundary smoother. In Chapter 6 we
begin to address model representation by developing the stroke domain boundary code. In
Chapter 7 we develop the sentinel point method for minimally encoding polynomials over
arbitrary two-dimensional domains. In Chapter 8 we apply the piecewise-smooth machinery to
lossy image coding and compare the results to the JPEG image compression standard.

Chapter 9 is a summary of our results in more detail than presented here.

* An arguable exception is shape from texture.
g P p

2. Canonical Piecewise Smooth Example

In introducing a new subject, a canonical problem example is often most useful. Figure 2.1 is
a synthetic example of a piecewise smooth gray scale image. It has 250x256 pixels, each with
gray level value between 0 and 255 and being the fifteenth in a series of experiments is
designated Syn15. The image was generated with the 11 pixel intensity functions in Table 2.1.
Domain A was split into three pieces by the subsequent overlay of domains B, E, F, and K|

resulting in a total of 13 connected domains.

5x-5y +128

X +48

255
.0060xy —152y +176

—062x°-.062y* +8x +12y — 672
—.039%x%—.039y*—.0469xy +
168x +17.4y — 2189

—.027xy + 6.23x + 593y —1276
—-.00625xy+.9x + 16y — 182
—.00625xy+.9x + 1.6x — 230

32
—.048x% — 194y +.61xy —

| ™| g|o|=]| >

~T T T O

Figure 2.1
Synthetic Image Syn15 285x + 178y — 3798

Table 2.1
Synthetic Patch Intensity Functions

In a piecewise smooth image, each of the pieces, or domains, contains a subset of the pixels of
the image. The union of all such domains contains all the pixels of the image and the

intersection of any two domains is null. Each domain is also connected. That is, for any two

rectilinear path wihin D;

pixels in a domain: Vp € D;, VjVK(p; > P,). A rectilinear path contains

only vertical and horizontal movements through the centers of square pixels that.

Each domain has a smooth pixel intensity function that determines the values of its pixels.
Since any image is piecewise smooth if a different domain is assigned to each pixel, to make
this classification interesting we must also limit the number of domains. For our purposes, an
image is piecewise smooth if it can be efficiently modeled with N domains and

il

N, < Iog—II , where [I] is the number of pixels in the image.
2

For the rest of this thesis, we further restrict the pixel intensity functions to two dimensional

polynomials of order three or less:
D(x,y) = ax® +bx?y +cxy? +dy® + x> + gxy + hy? +ix+ jy + k.

Synl15 itself is comprised of second order or smaller polynomials as it was produced during

development of the second order extraction procedure.

2.1 Model Extraction

It seems clear that to minimally code Synl5 it would be desirable to discover the original
processes used to generate it. In this case, these piecewise smooth processes are known
beforehand so we can quantitatively evaluate any extraction procedure. Fortunately (for a
thesis topic), a literature search?>%101L12 does not provide a technique that seems appropriate
for recovering all 13 domains of Syn15. Its intensity function contains too much gradient that
is not associated with a boundary between domains. Additionally, several edges in the image
do not have any intensity discontinuity. Taken together, these two characteristics make the
recovery of an accurate partition an impossible task for previously reported segmentation
algorithms: edge linking, split and merge, thresholding, or region growing. Existing

segmentation techniques are discussed further in Chapter 4.

In Chapter 3 we develop techniques that use moments to help work with polynomial
approximation functions over arbitrary two-dimensional domains. In particular, we develop

O(1) (bounded by a constant) methods for the following domain operations:

e Determining a domain’s approximate pixel intensity function.
e Determining the total squared error between a domain’s approximation and the
actual pixel values in the domain.

e Merging two domains.
e Excising one domain from another.
e Adding and removing a pixel from a domain.

With these in hand, in Chapter 3 we develop an algorithm for greedy domain growing that is
particularly effective for partitioning images such as Synl5. Figure 2.2 shows the domain
boundaries extracted from Syn15 by merging until only 13 domains remain. Table 2.2 shows
the corresponding extracted intensity functions. The domain alignment is within a single raster
row or column for all domains, and the mean squared error (MSE) between the pixel values

predicted by the extracted intensity functions and their actual values is 0.228.

Al 5x—5y +127.75
B X +48
C 255
D .0060xy —153y+.013x +174.4
E —.062x*-.062y* +8x +12y —672.6
F —.039%x%—.039y%—.0469xy +
168x +17.4y — 2189
G —.007y*—.027xy + 6.3x + 6.28y — 1320
H —.0063xy+.9x +16y —182.6
I —0062xy+.9x +1.6x — 2313
H !] 32
R K —.048x* —194y° +.61xy —
Domains Extracted from Syn15 285x +178y —3796.2

Table 2.2
Pixel Intensity Functions Extracted from Syn15

Since few real images are perfectly piecewise smooth, it is instructive to examine how the
algorithm behaves against a member of the larger class of images that are piecewise smoothly
texctured. Synthetic image Syn16, shown in Figure 2.3, is Synl5 with additive gaussian noise
(6=16). The result of partitioning Syn16 via greedy domain is shown in Figure 2.4. One of

several obvious problems is that domains B and C have been merged.

The algorithm of Chapter 3 is able to jointly optimize both a bulk property such as MSE and a
boundary property such as overall length. Boundary length is important from a coding
perspective in that longer boundaries take more bits to encode. A generalization of this coding
cost argument, called the Minimum Descriptive Length Principle®, asserts that if two or more
possible interpretations of a set of data exist, zbe simplest is often the best. Another way of saying
this is that nature prefers simplicity. It certainly would have been quite difficult to generate a

synthetic image with the boundaries of Figure 2.4.

The result of performing a joint optimization of boundary length and MSE with a boundary
length weighting factor of 256 is shown in Figure 2.5. The result contains the correct number
of domains and has good boundary alignment everywhere where the signal-to-noise ratio is

greater than -6 dB.

f;, i
Al B D
< . .
C -
A2
E P
A3 %
F ::_l.
G &
H
Figure 2.3 ' Figure 2.4
Synthetic Image Syn16 Initial Domains Extracted from Syn16

Although the partition of Figure 2.5 is quite good, much of the boundary is perceived as noisy
or irregular. In addition to being perceptually somewhat annoying, this noisy boundary is
unlikely to correspond to real image features and is also difficult to code compactly. In
Chapter 4 we develop a formal measure of boundary noise and use it to develop a procedure to
smooth previously extracted boundaries. The core of this procedure is a boundary following

state machine that recognizes loci of irregularity and transforms them to smoother

configurations. The method of Chapter 3 allows the smoother to efficiently optimize

boundary noise against pixel intensity function etror.

Figure 2.6 is the result of smoothing the domains of Figure 2.5. The loci of irregularity, or
raster breaks in the terminology of Chapter 4, are shown as darker dots along the boundary on
both figures. In its present form, the smoother is constrained to monotonically decrease the
overall boundary length. Lifting this restriction could result in some increased recovery of the
curvature of the circular boundary, but the noise is larger than the underlying signal over much
of this boundary and it is not clear exactly what improvement can be attained. Interestingly,
the perceived sphere is quite clear even though the noise completely obscures the actual
boundary. This is probably due to the parabolic illumination function centered over the circle.
This illumination is responsible for turning the circle into a perceived sphere and the

persistence of this illusion is quite strong even when the boundary is obscured by noise.

Figure 2.5 Figure 2.6
Syn16 Domain Extraction with Noise Suppression Smoothed Syn16 Domains

2.2 Model Coding

A viable piecewise-smooth model extraction procedure allows us to produce some new results
for coding model parameters. Chapter 5 describes a chain coding procedure for domain
boundaries. A three direction (left, right, straight) chain is used. Further information supplies

chain start points and multiplicity: clockwise, counterclockwise or both. The chains are self-

terminating at tee intersections with previously encoded boundaries. Disambiguation
information distinguishes terminating and continued corner junctions. Probability estimation
contexts are used to further reduce the code length of each chain. Significantly, these contexts
are not comprised of a set number of previous events. Rather, they are the boundary states
used by the boundary smoother of Chapter 4. The synergy produced by the coder knowing

that the boundary is smoothed allows for improved coding performance.

Example Separators Raster Breaks Bits PSNR

Unsuppressed 4160 904 6020 24.18

Suppressed 2362 348 2895 24.37

Smoothed 1876 48 1208 24.35
Table 2.3

Syn16 Boundary Coding Statistics

Table 2.3 shows the results of coding the three partitions that we have seen thus far. The first
line of the table is for the boundary extracted without noise suppression. The second line
corresponds to the noise suppressed extraction. The third line is data for the smoothed
boundary. The reduction in code length between lines 1 and 2 is due primarily to a 2:1
reduction in the length of the boundary. This is understandable since the noise suppression
was achieved by including boundary length as a parameter of the extraction procedure. Lines 2
and 3 illustrate how reducing the number of raster breaks in the boundary has a dramatic effect
on the boundary code string length. The smoothed boundary is only 20% shorter but its code
string length has been reduced by 60%.

The last column of Table 2.3 shows how the noise really dominates this problem. When
comparing two 256 level grayscale images, the peak signal to noise ratio (PSNR) is defined as

256
ZOIOQW' Since Synl16 is Syn15 with 6=16 noise, the expected value of PSNR for a

256
petfect extraction of the undetlying piecewise smooth model is 20|09E =24.08 dB. Al

three examples are very close to this value and the importance of introducing the additional

boundary length and smoothness constraints to achieve the final result is clear.

Figure 2.7 Figure 2.8
Implicit Code Points Decoder Reconstruction, Qs = 64

Chapter 6 presents a new procedure for coding 2D polynomial pixel intensity functions. The
key to the method is a set of sentine/ points, whose locations are calculable only from domain
geometry, for which modeled values are transmitted. Using these points, a standard least
squares solution is derived for the entire domain. The most important aspect of the procedure
is the method for choosing the sentinel points. This becomes particularly interesting for third
order polynomials, where 10 points must be chosen for each domain. Figure 2.7 shows the
sentinel points for the smoothed model extracted from Syn16. Since this is a second order

image, there are six sentinel points per domain.

Since the sentinel points lie within their associated domain, their values are constrained to lie
within the range of image representation, or for our 256 level grayscale images, between 0 and
255. The base number of bits necessary to code a sentinel point value is set by an associated

quantization step size, Qstep. The quantization step size is the minimum difference between

two dissimilar values. Since our values are constrained between 0 and 255, this base bit

256
Qstep

quantity is 109,

Table 2.4 shows the results of coding Syn15 with no quantization and with eight quantizer step

sizes of 1 - 128. The fourth and fifth columns show the error between the coded model and

the original image at the various steps. The third column shows the squared quantization noise
that would be expected if the original image were quantized directly at that step size and the
values falling into each quantizer bucket were uniformly distributed What is interesting is that
for this experiment, the error produced by quantizing the sentinel points is comparable or less
than the error expected from quantizing the image directly. This verifies that the algorithm for
choosing sentinel points is operating fairly well for domains having shapes similar to those of
Synl5. Figure 2.8 shows a reconstruction of Synl5 with the values of the sentinel points

quantized using a Qstep of 64. The error introduced by quantization is perceptible but not

objectionable even at this quantization level.

Q Step Size Bits/Coef. Reference Qnoise MSE PSNR

- o0 -1 0.228 54.6

1 8 25| 0417 51.9

2 7 S 0.662 49.9

4 6 1.5 1.92 45.3

8 5 5.5 5.68 40.6

16 4 21.5 17.5 35.7

32 3 85.5 09.7 29.7

64 2 3415 | 251.2 24.1

128 1 1365.5| 937.8 18.4

Table 2.4
Syn15 Implicit Point Quantization

The number of bits needed to code the sentinel point values can be further reduced by using
prediction. Table 2.5 shows the result of using both quantization and prediction on the
sentinel points of Syn16. The predictor used is the average value of the sentinel points received
thus far for each domain. Since the first point received for each domain is not predicted, only

the second and subsequent sentinel points benefit from prediction.

The most interesting feature of Table 2.5 is the interaction of actual image noise with
quantization noise. The MSE of the reconstruction is not appreciably effected by quantization
noise until its amplitude approaches the amplitude of the noise in the source image. For real
images the analog to the introduced noise of Syn16 are features such as texture that are not

piecewise smooth.

10

The significance of this is that pixel intensity functions can be quantized more heavily when the
distortion before application of quantization is already high, such as when modeling a highly
active image with only a few domain. Quantization distortion only becomes noticeable when

its level approaches the error of the full precision piecewise approximation.

Quantizer Step Size Code Bits Entropy | MSE PSNR

- - - | 2387 24.35

1 453 537 | 238.8 24.35

2 415 498 | 239.1 24.35

4 369 447 2399 24.33

8 324 397 2439 24.25

16 257 315 | 254.6 24.07

32 189 23| 306.1 23.27

64 122 1471 4554 21.55

128 85 1.09 1070 17.84

Table 2.5
Syn16 Implicit Point Quantization and Prediction

Perhaps the most significant assertion of Chapter 6 is that the smaller the domain size, the
more its pixel intensity function can be quantized before introducing additional perceptible
distortion. One reason for this is the nature of the extraction algorithm. Since smaller domains
have a larger periphery to area ratio, they are preferentially merged to minimize the boundary
length term of the model cost function. Clearly, the smaller the domain, the more its intensity
must differ from its neighbors for it to persist during domain growing. Since small domains
differ significantly in intensity from their neighbors, they can be quantized more heavily before
distortion becomes noticeable. Experiments in human perception* have shown that the
human eye has reduced sensitivity to intensity changes at low and high spatial frequencies.
Since the smaller the domain the higher its associated spatial frequency, the more it can be

quantized before introducing noticeable distortion.

The domain size and model fidelity dependencies combine to allow for significant quantization
over a wide range of compression ratios. When compression is high, the overall error is
already significant before quantization and therefore quantization can be quite heavy before it

introduces additional distortion. When compression is low, most of the domains are quite

11

small and can be quantized more heavily. The amount of quantization applied to a domain of a
given size is determined implicitly by a simple size /e known to both the encoder and decoder.
No additional information is needed to specify the amount of quantization applied to a given

domain.

2.3 Coding Experiments
In Chapter 8 we apply piecewise smooth coding to four commonly available images: Lena,
Cameraman, Baboon, and Miss America. The experimental results are compared to the JPEG

lossy algorithm for bit rates of approximately 0.125 to 1.0 bits/pixel.

Image | Piecewise-Smooth Bits MSE | PSNR | JPEG Bits | MSE | PSNR

Syn15 1661 0.417 51.9 4088 1011 18.09
Synl6 1465 254.6 24.07 4104 1242 17.19
Table 2.6

Coding Results for Syn15 and Syn16

To motivate these results, Table 2.6 gives coding results for Syn15 and Syn16. Unfortunately,
the amount of fixed overhead in JPEG precludes it from coding at comparable rates. Of

course, excellent piecewise smooth performance is expected from canonical examples.

Since JPEG is not designed to code below about 0.5 bits/pixel and changes in its design can
increase its performance in the low bit rate regime, it is not fair to criticize its performance at
low bit rates. What the data show, we believe, is that piecewise smooth coding is robust across
a wider range of images than JPEG. What the data cannot show is the nature of the distortion
produced by each method. We believe that the distortion introduced by piecewise smooth

coding is significantly less objectionable than the block DCT artifacts of JPEG.

12

3. Moments of Two Dimensional Domains

Recall the first canonical example from Chapter 0 where we synthesized the image of Figure
2.1 from the polynomial intensity functions of Table 2.1. We now develop some powerful
tools for addressing the inverse problem of recovering Table 2.1 from Figure 2.1. These tools
are moment operators that manipulate sub-domains of an encompassing global domain. The
moment operators are a general solution to the problem of fitting a piecewise-smooth surface
through multidimensional data. Because this is a general problem we won’t mention images in
this chapter. We do remember that we are addressing the image problem, however, and all

specific results are confined to the two-dimensional problem.

3.1 A Digression

I still remember the summer before my high school junior year and the purchase of my first
scientific calculator. I pored over every feature of that Texas Instruments SR51 and read the
manual from cover to cover. I remember in particular its ability to turn random pairs of x and

y coordinates into the slope and intercept of the best fit straight line through them.

One proceeded by entering in turn each coordinate pair into its respective register and pressing
the X+ key. A mistake or change of mind was rectifiable without doing everything over again

by entering the data point to be removed and pressing 2—. When all points had been entered

the slope and intercept were a touch of the SLOPE and INTCP keys away.

My only significant use of this feature was to extract organic reaction rates from experimental
data as a college sophomore. The venerable SR51 died shortly thereafter and although the
HP41C bought as a replacement also had the same capability, I never had use for it again.

Until recently.

3.2 Moments
Linear regression against a single dimensional function is the simplest use of the method of /east
squares. The least squares metric simply minimizes the sum of the squares of the differences

between the actual ordinates and their corresponding straight line predictions. It turns out that

13

the slope and intercept of the straight line that best approximates a set of data points in the

least squares sense can be calculated by solving the following system of linear equations: >

Y1 D x [b _ Dy,
in inz m inyi ’

where the X; and Y; are the independent and dependent coordinates of the data points and

the sums are over all the data points.

We develop this further later, but for now the interesting thing is that once we have performed
the sums, we can calculate with a fixed number of operations the parameters of the best fit
straight line no matter how many data points we have. We can also add and subtract single or
groups of data points, not wasting any previously expended effort, and recalculate new

approximation parameters with the same fixed number of operations.

The sums at the heart of this technique are commonly called moments. They are the discrete
analogs of parameters such as center of mass and center of inertia that are commonly
encountered in introductory calculus. As we extend the method to more than one dimension
and to second and third order approximation functions, we encounter moments that become

increasingly numerous and complex, so let’s develop a shorthand sum notation.

We focus on the two dimensional problem and use X and Y as the independent variables,

with Z as the dependent variable. The shorthand we use simply replaces the summation with

the single letter S and makes the vatious powers of X, Y and Z into subsctipts. For example

2,252 Shorthand
Z X| yl Z| SXZ yZZZ
Each problem order has two sets of moments. Since we weren’t able to find terms for these
sets in the literature, we coin new terms. The set of natural moments appears in the natural moment

matrix on the left side of the equals sign and contains only sums of powers of the independent

variables. The set of forving moments comptises the forcing moment matrix on the right side and also

14

contain powers of the dependent variable. The natural moments are designated N and the

forcing moments F. The union of N and F and SZ2 is M and is called the moment set of
problem instance. S , is not needed to find the least squares solution but is used later when

determining the error between a domain’s data and its polynomial approximation function.

3.3 Domain Operations

Our ultimate intent is not to find a single polynomial approximating function for a set of data,
but to find a piecewise smooth approximation. To do this, we break the problem into a set of
disjoint domains, the union of which is the global problem domain. We next define four

operators that enable us to manipulate these domains via their moment sets:

k

. add(M,p)—)VSeM:Sxiijk=S k+xpiypizp

x'ylz

e remove(M,p) — VS € M:S

X

. VI P
iyizk ™ Sxiy’zk Xp yp ZP

e merge(M’,M") > VS eM"S/=S5/+S/
e excise(M',M") > VS eM"S§/=5/-§/

These operations let us efficiently add and subtract data points from a moment set and merge

and separate two moment sets. Obviously, each of these operations is O(| M |) where |M| is

the number of moment sums in a moment set. We see in the following sections that | M| for
two dimensional domains is 10 for linear, 22 for quadratic and 38 for cubic approximating

polynomials.

This chapter focuses only on fast methods for manipulating moment sets. The methods
developed are used in later chapters. The greedy domain extraction algorithm of Chapter 3
uses the add and merge operations. The smoothing algorithm of Chapter 4 uses the add,

excise and merge operations.

3.4 The Two Dimensional Linear System
In Section 3.2 the least squares system of equations for the one dimensional linear regression
problem was given without justification. In two dimensions the problem becomes slightly

more complex, but is still small enough to go through all the details that we gloss over for

15

higher order systems. Given a data generation function, zZ = p(X,Y) over a domain D our
task is to minimize point by point the square of the error between a two dimensional linear

approximation function, f,(X,y)=1iX+ Jy+K, and the data generation function. In other

words, we must find the coefficients i, J,and K that minimize the following sum:
E= Z(Z| —ix, = Jy, -k)?.
D

JE JE JE
o 2j Jk

A local minimum for E exists where =0. Differentiating with respect to

I yields:
0= ED:z(z, —ix, — jy, —K)x, .
Separating the sums and rearranging gives:
DXz = 2 i Xy, 2k, .

D D D D

Differentiating with respect to all three unknowns and using our sum shorthand notation gives

the two dimensional linear least squares system:

s, S, [k] [s,
S, S. S, |i|=|Ss
S, Sy S.|i] |Se

3.5 Second and Third Order Systems

The second order approximation function:
f,(x,y) = fX* + gxy +hy® +ix+ jy +k

yields the system:

16

S S, S Sy2 Sy 2k S,
Sy Sy2 SXy Sy3 SXyz 2y j S
S¢Sy Se SXyz szy P ~ S,
Sy2 Sy3 Sxyz Sy“ Sxy3 ay | N Sy
SXV Sxyz szy Sxy3 szyz y |9 Sxyz
S szy S szyz SX3y S f _szz_

The third order approximation function:
f.(x,y) = ax® +bx’y +cxy® +dy® + fX* + gxy + hy” +ix + jy +k

yields the system:

S Sy S S, S S, S, S, S, S, [k S
X y Xy X y Xy x%y X z
S, S, Sy S, S, S. S, S. So. Sulil|S,
s, S, S, S, S. S. S, S.. S. S.|i||s
X Xy X2y X Xy X2y X3y X Xz
Sz 83 SZ S4 S3 Szz Ss SA. S23 S32 h Sz
y y Xy y Xy X7y y Xy X7y Xy y'z
Sxy Sxyz szy Sxy3 Sx2y2 Sxay Sxy4 Sx2y3 Sx3y2 Sx4y g B Sxyz
Sz Sz Sa Szz Sa 84 Szz Ssz S4 Ss f _Sz
X X7y X X7y X7y X X7y X7y’ X7y X Xz
S3 S4 83 85 S4 Szz Se Ss SZA 833 d 83
y y Xy y Xy X7y y Xy X7y X7y yz
Sz Ss Szz S . st Ssz Ss 824 833 S42 C Sz
Xy Xy X2y Xy X2y X3y Xy X2y X%y Xty xy%z
Sz Szz Sz Sz3 Saz 84 S24 Saa S4z Ss b Sz
X2y X2y X3y X2y X3y xty X%y X3y x*y X%y x2yz
S, S, S, S., S. S: S., S., S, S: | a S,
L X X7y X X7y X'y X X7y X7y Xy LSS | W L Xz |

Note the way the linear system is embedded in the quadratic system which is embedded in the

cubic system. We exploit this arrangement to solve singular systems in the next section.

3.6 Solving Least Squares Systems
3.6.1 Closed Form Solution for the Linear Problem
The two dimensional linear system is small enough so that a closed form solution is tractable.

If the determinant of the S (left hand) matrix is:

17

D=S'S,'S,-5:5,7~8S,+2:5,.5,:5, -8 7.5,

then the solution is:

K] [8:05,8, =8, 5,(5,5, =8, 5,04 8,(5, 5, =5,5,.)
J =B Sz'(Sx'sxy_sysxz)—'_syz'(S'SXZ_Sx2)+sxz'(sx'sy_s'sxy)
i S, (S, Sy ~5,5,)+5,,-(S, -5, =S -5,) + 5, (S-S, =5,7)

This solution requires 39 multiplications, 10 additions and 1 division. Difficulties are presented

by D term found in the solution for all three coefficients. Some domains, a trivial example

being a domain with a single data point, generate singular first order S matrices and the
determinant is zero. Domains whose S matrix is singular do not contain enough data points

to uniquely determine all three polynomial coefficients.

For example a domain whose data points all have identical X coordinates would have difficulty
generating a coefficient for the y term in the approximating polynomial. What is desired for
such domains is for the solution procedure to deliver coefficients for which it has information
and zero for the others. In the pathological example of the single point domain, only K would
have a non-zero value: the value of the dependent variable at that point. The next section

develops a solution method with the desired characteristics.

3.6.2 Cholesky Factorization of Symmetric Positive Semidefinite Systems
3.6.2.1 Symmetric Positive Definite Systems
The Cholesky factorization for symmetric positive definite matrices is a variation of LU

factorization that takes advantage of symmetry to reduce the operation count by a factor of

3
n
two, since U = LT, The method uses O(F) multiplications and additions.

Since the matrix is positive, square roots can be used to calculate the diagonal elements of L .

The square roots can be avoided by a variation of the technique that leads to a factorization of

18

the form LDL" where L is a lower triangular matrix with unit diagonal elements and D is a

diagonal matrix

The systems of Sections 3.4 and 3.5 are called the normnal equations for a least squares problem.
The matrices of normal equations are known to be positive but are not necessarily definite. As
described previously, they can be singular which results in zero pivots. Zero pivots lead to
problems for factorization schemes that are usually solved by full or partial pivoting. A
permutation is applied to the system before each row reduction that hopefully can bring a non-

zero element to the pivot position.

Pivoting is only successful in solving matrices that are non-singular. Pushing a near zero pivot
further down into the matrix only delays things unless the matrix is non-singular. For singular
matrices a zero pivot is eventually encountered that a permutation cannot remove. The singular

value decomposition® is a method for dealing with singular matrices.

3.6.2.2 The Singular Value Decomposition
The singular value decomposition works on any matrix but, we limit the discussion to its use

with symmetric positive semidefinite matrices. For such a matrix, S, a singular value
decomposition factors it into the form QAQT where Q has as its columns the eigenvectors
of S and A is a diagonal matrix with the eigenvalues of S along its diagonal. Q is also

T
orthonormal, Q" Q = I, so solution of the least squares system, SX = b after decomposition is

x=QA'Q'b.

Of course since A can have zero elements along the diagonal and therefore be singular, A?

can fail to exist. Neglecting zero diagonal elements of A, A™ is simply the matrix formed by

replacing each diagonal element of A with its multiplicative inverse. The trick for handling

zero or near zero diagonal elements of A is to just replace them with zero inA™?. The

solution resulting from this replacement is provably of minimum length®.

19

Of the many polynomials that can approximate the underdetermined system, we want the one
with the smallest coefficients, and the minimum length supplies just that. Also, zeroed
coefficients of the minimum length solution are the ones for which the system contains the

least information, exactly what we want.

3.6.2.3 Cholesky Factorization Extended to Semidefinite Systems

The singular value decomposition is significantly more complex than the Cholesky
factorization and even though in most cases its asymptotic complexity is equivalent, its
overhead makes it significantly slower for small matrices such as ours. For this reason, we
develop a procedure to extend the Cholesky factorization to positive semidefinite systems by

applying the singularity removal technique of the singular value decomposition.

The Cholesky method starts at the upper left of a matrix and proceeds down the diagonal with
a progressively wider wavefront. The procedure is done 7 place with the entries below the

diagonal replaced with L, the diagonal entries replaced with D, and the entries above the

diagonal replaced with DL .

For i< j, S =8 =2 S Sq -

k<i

.. Sii
Fori>j,s;=—".
i

Fori=j, s =8 —2.8S;.

j<i

Once the S matrix has been factored, the system SX =D is solved by forward (i increasing),

b =b -2 s;b,

j<i

and then backward (I decreasing),

20

b, — Db

bi _ J>i
S

i
substitution, with place replacement of b .

Since S is positive semidefinite, we know that both its eigenvalues and pivots are either
positive or zero. Additionally, if an eigenvalue is zero, its corresponding pivot is zero. Since
the Cholesky method delivers the pivots of S into the diagonal of the solution, the S;; are
constrained to be greater than or equal to zero. Our first modification of the Cholesky method

1s to replace a diagonal element, S;; , with ero if its factored value is less than a stability parameter o :

1’
Si <a=s; =0.
Further, just as in the singular value decomposition, we replace anything divided by a zero §;

with zero. Now for some justification.

In S, each column is contributed by a particular polynomial coefficient and each row is
contributed by differentiation with respect to a particular coefficient. If the domain does not
have enough points to uniquely define a coefficient, we would like for the system to behave as
if we had not included its polynomial term in the first place. Ideally, the system would reduce

to the principle minor of the singular value and become positive definite.

Let’s first look at S. In Section 3.5 we defined the rows and columns S in a particular manner
so that lower order systems would always be embedded in those of higher order. Since the
Cholesky method starts at the upper left and works down and to the right, if there is a singular
coefficient, it is always of the highest possible order. For example, if all points of a domain

have only two different y coordinates, it is not possible to uniquely determine coefficients for
y’, y',and y?. By the arrangement of the Cholesky system, we assure that the singular value

arises in the y* column of the Cholesky matrix.

21

Next, we show that a singular value does not influence the values of any entries in S that are

not on the row or column of the singular value. Figure 3.1 shows an example quadratic system
whose y2 term is singular or nearly so. When solving the system, the diagonal element

corresponding to y?, labeled 0, is less than a and is set to zero. The elements 0" are forced
to zero since all elements below the diagonal are divided by the diagonal element of their
column. The elements 0" could be set to zero by reflecting 0" across the diagonal but it is
not necessary to do this directly. Any use of an above the diagonal element in the equations for
above the diagonal or on the diagonal elements is multiplied with its transpose image across the
diagonal. Since the 0" elements are the reflections of the 0" elements, the 0” elements are

virtnal eros.

s s, S, S. S, S.]
X y xy X
S, S. S, S. S. S
SX SXY sz xy? szy Sx3
S, S, S, 0 0" 0"
y y Xy
Sxy S 2 S 2 0’ S 2,,2 S 3
Xy Xy Xy X7y
S, S, S, 0 . S,
L x Xy X X7y x|

Figure 3.1
Zero Propagation
When forward substituting, the mixture elements §; are those elements of S below the

diagonal since 1> J. These are the 0" elements. When backward substituting, the mixture
clements are the 0”. Once again these are virtual zeros, because the only use of these

clements is in the calculation of the coefficient of y®. But this coefficient is divided by its
diagonal clement, resulting in zero. Since the coefficient of y? is zero and solution for the
other coefficients are not effected by the presence of the y2 entries in the system, it is as if

they do not exist. The solution is the same as if we had not initially included the y* moments

in the system!

22

3.6.2.4 Examples
The significance of the previous result is difficult to appreciate without some examples. Figure
3.2 shows four sample domains. Domains b and c are second order singular and a, and d are

not. In the following experiments the forving function
z=100+y—x—y? —2xy + x*

is placed over each domain. The name forcing function indicates that it is the source of the
forcing moments. It is simply the data generation function for our example domains. Since
the coordinate of the upper left corner point of each domain is (0,0), a value of 100 for the
constant term of the forcing function assures that it remains positive over all four of our

sample domains.

HEN HEN EEEENEN EEEENEN
H N HEN EEEENEN EEEENEN
| |
a b c d

Figure 3.2

Sample Domains
The second order two-dimensional normal equations, SX =D , for the given forcing function

over domain a are:

6 4 4 6 1 6 k| [598]
4 6 1 101 1] 394
4 1 6 1 1 10]i 402
6 10 1 18 1 h| ~|590]
11 1 11 g 98
6 1 10 1 1 18] f| |606]

Note that the natural moments populate S and the forcing moments populate b. The

Cholesky factorization and solution for domain a are:

23

6 4 4 6 1 6] [100]
67 333 -167 6 33 -3 1
67 -5 25 0 5 45 -1
=11 18 0 12 -6 4] "7 -1f
17 1 2 -5 4 -4 _2
1 -9 18 33 -1 67 1]

Note the correct recovety of the coefficients of the forcing function in b. Domain a is the

smallest possible second order non-singular domain. The solution to domain b, also having six

elements is:

(12 6 30 6 15 110] [100]
5 3 0 3 75 0 0
25 0 35 0 175 175 -1
5=l's 1. 00 0 o | "7 of
125 25 5 0 875 O _2
917 0 5 0 0 7467 1]

Note the singularity developing in the Yy column of S. This is due to b having insufficient

extent in the Yy direction to uniquely determine all three Y coefficients.

The solution for domain ¢

(24 12 132 12 66 1012] [100]

5 6 0 6 33 0 0

55 0 286 0 143 3146 -1
>=l's5 1 0 0 o0 o | P o
275 55 5 0 715 O ~2
4217 0 11 0 0 266933 1]

24

shows a similar result for a larger domain of the same shape. For both of these examples, the
y as well as the y* coefficient turned out to be zero. This is due to the forcing function over

the domain, not the geometry of the domain itself.

Domain dadds another point to cand removes the singularity:

25 14 143 16 8 1133 | [100]
56 816 792 1104 6072 11352 1
572 97 30735 7.76 18571 345252 -1
5| 64 135 03 263 1084 2408 | D7 |-1f
352 744 6 413 715 0 -2
14532 1391 1123 917 0 2669.33 | 1]
All examples thus far have been solved with a stability parameter, &, of —-, where S is the

32

upper left element of S. If we reduce & to g , the solution for domain dis:

25 14 143 16 88 1133 | [998]
56 816 792 1104 6072 11352 3
572 97 30735 7.76 18571 345206 ~91
S=| 64 135 03 0 1084 2408 | °7| o
352 744 6 0 11621 9935 ~2.09
4532 1391 1123 O 85 280517 | 99 |

As can be seen, the y? term of the polynomial has been forced to zero by the singular value
correction procedure. The solution is just the best least squares coefficients for the five
remaining polynomial terms. What is especially interesting is how the Y term has the smallest

pivot and is the first to be eliminated by raising the value of ¢ . This is exactly the intuitive

result that one would expect from domain d. Looking again at the & = - solution to d, we

32

can see that the order in which coefficients are zeroed as the stability factor increases is:

25

y> =y — Xy = X = x*. The constant term cannot be eliminated as its diagonal element of

S remains unchanged by the procedure

3.7 Error Function
In addition to solving for the least squares polynomial approximation for a domain, we need to
solve for the error between the approximating polynomial and the actual data values. The sum

of the squares of the differences between the data points and the approximating polynomial is:

E, =D (z —ix, — jy, —k)?.

D

Expanding the sum and using our shorthand sum notation, the total squared error for the two

dimensional linear approximation is:

E, =S, +k*S+2]kS, + j°S . +2ikS, +2ijS,, +i’S . —2(kS, +]S, +iS,,).

The error for the quadratic model is:

E,=S.+

k?S+2jkS, + (2hk + jZ)Syz +2hjS , + hZSy‘l +2ikS, +2(ij + gk)S,, +
2(hi +gj)S, . +2ghS . +(2fk + i%)S . +2(fj+ gi)S,., +(2fh+ gz)SXZYZ +
21S s +21gS ; + f ’S .,

—2(kS, +JS,, +iS,, +hS , +0S,, +15.)

and the error for the cubic model is:

26

E,=S,+
k?S +2kjS, + (j° +2kh)S . +2(kd + jh)S , +(2jd +h2)Sy4 +2hds +d28y6 +
2kiS, +2(ji+kg)S,, +2(jg +hi + kc)SXyz +2(jc+hg + di)SXy3 +2(hc+ dg)SXy4 +
2chXy5 +(2kf +ii)S , +2(kb + jf +ig)SXzy +(2(jb+hf +ic) + gZ)SXzyz +

2(df +gc+ hb)SXzy3 +(c? +2db)SX2y4 +2(ka +if)S . +2(gf + ja+ ib)SX3y +
2(gb+ha+cf)SX3y2 +2(da+cb)SX3y3 +(2ia+ f Z)SX4 +2(ga+ fb)SX4y +

(b? +2ca)S,, . +2faS; +2baS +a’S , —

2(kS, + Sy, +1S,, +hS . + S

we ¥ 15, +dS . +CS . +bS. +aS.,)

3.8 Space/Precision Issues

Since the domain management methods developed here are designed for use in extracting a
piecewise smooth approximation of a set of data, all domains have a common coordinate
reference. For this reason, domains that are far from the origin can have quite large moments
even if the domain itself is quite small. For example, in the third order system the natural

moments contain powers of X and Y up to six. For a single point domain at 100,100 its

largest natural moments have a magnitude of 100°.

For effective use of cubic systems, 64 bit integers must be used to keep the moment sums.
The maximum domain coordinates used should be less than 1000. With 39 moments per
domain, 312 bytes of memory must be available for each domain in use. For good
convergence of the Cholesky factorization, 80 bit floating point (64 bit mantissa) precision is

necessary.

For second order systems, at least double precision floating numbers (48 bit mantissa) are
necessary to maintain moment sums. Double precision calculations are necessary for reliable

Cholesky convergence. The 23 second order moments need 184 bytes of memory per domain.

First order moments can generally be kept in 32 bit integers. Double precision should still be
used for Cholesky convergence. The memory requirement for the 10 moments is 40 bytes per

domain.

27

Thus far, the method has been tested on zero origin global domains up to 352x288 data points
with ranges of 0 255. The range should be extendible to 32 bits before it becomes the limiting

factor. Further increases in precision may be necessary for larger domains or ranges.

3.9 Summary

We developed moment operators for use in finding least squares piecewise-polynomial
approximations of multidimensional data. We introduced terminology for describing the
components of multidimensional least squares normal equations. The natural moment matrix
is comprised of moments of the independent variables. The forcing moment matrix is
comprised of moments of both the independent and dependent variables. We developed
complete natural moment matrices, forcing moment matrices and least squares error functions
for first, second, and third order two-dimensional polynomials. We extended the Cholesky
factorization of symmetric positive definite matrices to symmetric positive semidefinite
matrices. We used the modified Cholesky factorization to determine the polynomial

coefficients supported by a domain.

28

4. Domain Extraction

4.1 Motivation

For Piecewise Smooth Coding to be useful, an efficient method for extracting an optimal set of
domains and pixel intensity functions from an original image must be available. If we refer to a
proposed set of domains and functions as an image model, to determine optimality an
extraction procedure must balance two different measures. First, how well does the model

approximate the original image? Second, how much does it cost to code the model?

To determine how well a proposed model approximates the original image we must measure
the error between the image rendered from the model and the original. Since any extraction
procedure must accept or reject many different proposals in the process of obtaining a near
optimal one, the error comparison operation must be quite fast. The methods of Chapter 3 are

one way to achieve O(1) error comparison.

The final arbiter of a model’s cost is the number of bits necessary to code it. Unfortunately,
since a great number of cost measurements must be made by any extraction procedure, it is not
tractable to completely code each proposed model to obtain its cost. However, the exact cost
of a model is generally not needed to obtain an approximately optimal solution. If an
approximate functional dependence of the total model cost on each domain and intensity

function element is known, the function can be used in the extraction procedure.

An extraction procedure must balance the two competing requirements of model fidelity and
model code cost. It certainly is not entirely obvious how this can be done, so it is useful to

examine the literature for prior work.

4.2 Background

The closest area of study to domain extraction is image segmentation. Segmentation has been
described extensively in the literature®3 and is similar to domain extraction in that an image is
partitioned into regions or segments that align (somewhat) with objects in the image. A wide

variety of methods have been documented. They generally fall into four categories: histogram

29

clustering, region growing, split and merge, and boundary finding and linking techniques. One
drawback of most reported techniques is that algorithm parameters must be adjusted for each
segmented image for reasonable results to be achieved. More recently, several schemes have
been proposed that are based upon global optimization techniques and attempt to remove this

parameter adjustment problem.

Perhaps the first reported use of global optimization techniques was by Gemen and Gemen’
who used a Bayesian model and simulated annealing for image restoration. LeClerc® used
Minimum Descriptive Length arguments to arrive at a similar model formulation and used
continuation functions as his optimization strategy. While potentially highly parallel, these first
descriptions are not directly applicable to segmentation of arbitrary images since the techniques
partition an image into a set of predefined equivalence classes. Prior knowledge of potential

equivalence classes is only available in certain carefully constructed problem instances.

Marques, Gasull, Reed and Kunt’ show a boundary relaxation technique that is a descendent of
the approach of Gemen and Gemen. While this strategy is useful for optimizing the
boundaries of an existing partition, it cannot be easily extended to find the optimal number of
regions in a segmentation. Sheinvald, Dom and Niblack!? propose a greedy strategy for region
growing. Minimum Descriptive Length arguments are used to detive a cost function that

drives the region merging process.

Kwon and Chellappal!! describe an interesting technique for region growing that uses separate
methods to grow smooth and textured regions. The smooth regions that overlap at least 50%
with a textured region are classified as textured. Smooth regions are approximated by second
order polynomials and are grown by merging adjacent regions that cause an increase in
approximation error below a certain threshold. This is a recent result and it shows how the use
of global optimization techniques for image segmentation is still not widespread. Their
experimental results testify to the difficulty of controlling the growth of appropriate second

order regions using simple threshold merge operations.

Another method that deserves particular analysis is the variable order surface fitting algorithm

of Besl and Jain'2. It is the most elaborate of previously reported methods that model regions

30

with smooth intensity functions. The method uses local image characteristics to classify the
intensity surface over each pixel. A subsequent step maps the local surfaces into larger surfaces
while attempting to minimize the surface order. Because this method essentially takes local
derivatives, its performance degrades rapidly in the presence of noise. It was developed to

segment low-noise images obtained from a distance measuring apparatus.

4.3 Greedy Domain Growing

This Chapter embodies a greedy domain growing algorithm for image partitioning. It is similar
to the method of Sheinvald!V in that it uses an underlying image model that contains both bulk
and boundary components. It is more general in the sense that the exact form of the image
model is not predetermined. In keeping with the terminology of other chapters, we refer to a

region as a domain and to a segmentation as a partition.

An initial partition is formed by placing each pixel into its own domain. Domains are grown by
merging with adjacent domains. Each domain has an zdentity. The identity of a domain is simply
the data structure assigned to it by the algorithm. After each merge the smaller of the two

merged domains loses its identity.

The greedy order is determined by an associated cosz function. The algorithm is independent of
the exact form of this cost function. The identity of each domain holds private data that is
managed by the cost function’s izage model. The bulk component of the image model is consulted
via a callback routine when two domains are merged. A consultation allows the image model to

update itself as the partition changes.

Additionally, the boundary component of the image model is consulted when traversing the
partition boundaries. Each traversal yields a #ansient model of the boundary separating adjacent
pairs of domains. The identities of two domains and the transient model of their boundary are
made available as parameters to the cost function. The cost function determines the merge

cost of two domains and thereby the overall merge order.

31

4.4 Implementation

4.4.1 Concepts

There are three key areas that must be addressed in any efficient implementation of a domain
growing algorithm: membership, topology, and priority. If a domain is defined as a set, the
members of the set are its pixels. Topology refers to connectedness. For instance, given a
pixel, what are its neighbor pixels? Given a domain, what are its neighbor domains and pixels?

Priority determines the order in which domains are merged.

A set contains a list of its members and each member knows its set. Fach domain identity
includes a set of its pixels. Since a domain is a set, a pzxe/ can be a member of only one domain.
Each pixel also knows its own location in a fe/d. The field’s function is to provide direct access

to a pixel’s near neighbors and is implemented as a two dimensional array.

Whereas pixel topology is easily embodied in the field concept, deduction of domain topology
requires a more powerful technique. The #uaveler can traverse the outer boundary of a home
domain. A boundary traversal enumerates all pixel pairs that are on either side of the imaginary

boundary line that separates a domain from its neighbors.

An accummnlator is a fixed size set with an age 7ag for each of its entries. An accumulator’s global
age fag replaces an entry’s age tag when that entry is initially added or when a current entry is
updated. 1f an accumulator’s global age tag is incremented, entries updated or added subsequent
to the increment are younger than those added or updated prior to the increment. Accumulator
entries cannot be older than a maximum age. Entries older than their accumulator’s maximum
age are nvalid. An accumulator has a current size that is less than its maximum. An accumulator
is emptied simply by incrementing its maximum age and resetting its current size. An
accumulator’s contents can be enumerated. All accumulator operations except for enumeration

are O(1). Accumulator enumeration is O(N) where N is the current size.

Each domain identity contains an accummulator location tag that locates its accumulator entry if it
has one. Because of this, a domain can have only one associated accumulator entry at a time.

The accumulator tag makes accummlator membership guery an O(1) operation. A traveler

32

accumnlates neighboring domains (adds them to an accumulator) as it traverses the home
domain's boundary. Each accumulator entry also contains a private data structure that holds
the transient boundary model of its associated domain. As discussed previously this transient

model is managed by consultation with the boundary component of the image model.

The traveler and associated accumulator concepts only apply to the outer boundary of a
domain. A complete topological description of the neighborhood of a domain must also
include interior neighbors or Jols. Each domain identity also contains a set of its holes Every

domain is either in the global domain set or in another domain's hole set.

If north on the image plane is defined as pointing toward the upper part of the image, one of a
domain’s uppermost pixels is designated its northernmost. A domain may have more than one
pixel of the same maximum latitude. Any one of these pixels can be designated northernmost.
Since the northernmost pixel is used as an anchor point when traversing the boundary of the

domain, the key requirement is that o pixel of a domain may be further north than its northernmost.

The complete topological description of a domain partition is quite large. A mechanism is
needed for focusing attention on areas that contain adjacent domains that are similar via some
cost measure. A priority heap'? is used to hold one entry for each domain in the partition. Each
heap entry contains the best neighboring merge candidate of its corresponding domain. The
head of the heap therefore provides immediate access to the most promising pair of merge

candidates.

Maintenance of the heap as domains are merged is non-trivial. To aid in this function, each
domain identity contains a Jeap fag that can directly access its corresponding heap entry. After
two domains are merged, the local boundary is traversed and the heap entries for effected
neighbors are updated. This may necessitate the movement of the associated heap entries.
The heap has special operations that facilitate the updating and possible movement of heap
elements and the extraction of members not at the heap’s head. In Section 4.4.2.1 we describe

exactly how these special operations are used.

33

4.4.2 Algorithms

The domain growing process proceeds in a greedy fashion, the order being determined by an
associated cost function. Initial domains are formed by placing each pixel in its own domain.
Optionally, a simpler seed growing strategy can be used before use of the greedy merge
procedure. The priority heap is initialized with one entry for each domain. The following
sections detail each operation of the algorithm. The algorithm is summarized in Figure 4.3 at

the end of the detail descriptions.

4.4.2.1 Heap Maintenance

A priotity heap is used to maintain an ordering of possible merge candidates. In addition to
the standard operations of insert, peek head, and extract head, the heap object contains two
additional operations to update heap entries of neighboring domains when two domains are
merged. A generalized extract method is used to remove the heap entry of the domain that is
merged to the domain whose heap entry is at the head of the heap. The adjust method is used
to move heap entries for those domains neighboring two merged domains whose best merge

cost may have been effected by the merger. The update and generalized extract methods are

both O(log(N)) .

Each domain identity of the partition contains a tag that is an index into the greedy merge heap
for the entry associated with the domain. When a heap entry for a domain needs to be

adjusted, the tag locates the entry.

The key operation performed by most heap methods is swapping of heap entries. The swap
method knows the form of heap entries and updates their heap tags as their associated heap

entries move. Heap entries are kept small to facilitate movement.

4.4.2.2 Traveling
Figure 4.1 shows an example counterclockwise boundary traversal. The home domain’s
northernmost pixel anchors the boundary traversal. The boundary separator between the

home domain’s northernmost pixel and the pixel immediately to its north is a traversal’s

34

starting point. For a counterclockwise traversal, the initial direction of travel is west, and east

for a clockwise traversal.

The key traveling operation is next_move. Fach next_move operation moves to the next
separator location on the home domain’s periphery. If pixels are thought of as squares, a
separator is defined as an imaginary line that separates an edge of a pixel from the opposing
edge of its neighbor. A single pixel can be surrounded by at most four separators, and at most

three if the domain containing the pixel contains more than one pixel.

1 1 1 1 1 1 1 1 || |4 sample dpmains, 39
—, — = separators in path
i 2|2 f2 | 2]:f2|]|2]] 1| |Domains3and4are
' <« --Y P not holes of domain 2.
1 1 | 1 * 2 § 2 2 ! ! Note that all domain
—— A — pixels are edge
1 Lp2| 4|2 21 1 || |connected to another
e m s pixel in the same
L2 b2 121202 L]]|?1] |domain. Thesingle
X VIR o, EIECH pixel of domain 4 is
T2 (23312 21]]|21]||notconnected tothe
M -, : : pixel of domain 1 at
1 1| 2 2 '3 'f2 |1 1 its northwest corner.
C- - « -y .
WA I A 4 A 2 8 Y R

Figure 4.1
Traveling a Domain Boundary

The next_move operation follows the boundary as one would follow as maze. When traveling
counterclockwise an attempt to turn right is first made. If a right turn leaves the boundary, the
straight ahead direction is checked. Finally, if proceeding straight ahead leaves the boundary, a
left turn is made. A right turn is possible if both the pixel just ahead of the anchor pixel and
the pixel just ahead and to the right are in the same domain as the anchor pixel. Proceeding

straight ahead is possible only if the pixel just ahead is in the same domain as the anchor pixel.

35

10][10][z0][9][9][9][9]][9]||Whenmerging
domain 1 to domain

2, domain 3 becomes
10] [10] [0 9 9 9 9 9 a hole.The effected

periphery is
- .. DI EE T LE] LA highlighted.

11 . a2 Ws][5][5]||[1]]|Thenewdomain
retains the label 1.

Domains 5, 6, 8, 9,
- . 3 & 6 ! 8 & 10, 11, 12 and 13

may need to have
1 . 3 LR 8 (18t their heap entries

adjusted.
11 . . t]fe]fe][2][2 o
Domain 7 is not on

1l 1211121 112 1121 [12] (121 | 12 thehqlellstof
domain 1.

Figure 4.2
Hole Discovery

A left turn takes place if neither of these two conditions are met.. A clockwise traversal is

made by reversing the roles of left and right in the previous discussion.

4.4.2.3 Hole Discovery

Figure 4.2 is an example of hole discovery. Hole discovery is the process of determining which
neighboring pixels become holes when two domains are merged. The key idea is that a domain
touched when traversing the outer boundary of either domain before their merger and not
touched when traversing the outer boundary of the combined domain, must have become a

hole of the combined domain.

As discussed previously, an accumulator is a fixed size set which is sized to hold the maximum
number of possible domain neighbors (We discuss this maximum in Section 4.6.). As
neighboring domains are first encountered during a traversal, they are added to an accumulator.
Subsequent encounters update previously existing accumulator entries. Each traversal has a
unique identifier or age. Accumulator entries added or updated during a traversal have that

traversal’s age

36

Holes are discovered by traversing the boundaries of the domains being merged and
accumulating neighbors that are on either boundary. After the domains are merged, the
accumulator age is incremented and neighbors on the combined boundary are accumulated.
Any neighboring domains encountered in the post-merger boundary traversal have their

corresponding accumulator entries updated to the age of the post-merger traversal.

Following the post-merger boundary traversal, the accumulator is enumerated. Each entry in
the accumulator (there is one for each domain encountered in any of the three boundary
traversals) is retrieved and its age is examined. Any entries older than the post-merger traversal

are new holes.

4.4.2.4 Domain Tree Maintenance

When two domains are merged, holes in the original domains and those created by the merger
must have a new best neighbor search performed. Each domain’s hole set makes this process
efficient. Each domain is either in the hole set of another domain or in the set of domains that

are not interior to any other domain.

Initially, every domain is in the ghba/ domain set. As domains are merged and holes are
formed, both new and old holes must be moved to the appropriate parent set. Holes that exist
before a merge remain holes. The holes of the domain being subsumed are moved to the
remaining domain’s hole set. Newly discovered holes are added to the remaining domain’s

hole set.

If the domain being subsumed is in a hole set and the subsuming domain is not, the subsuming
domain is removed from the global set and placed in the set of the subsumed domain. This
can occur when the subsuming domain is completely surrounded by another larger domain but
it does not actually touch the surrounding domain. This subsumed domain can be completely
surrounded by intervening holes of the larger surrounding domain. If the domain being
subsumed is the surrounding or parent domain of the subsuming domain, the new combined

domain is placed in the hole set of the subsumed domain.

37

Build a heap by inserting one entry for each domain in a seed partition.
Loop until the desired number of domains is obtained:
Remove the head of the heap.
Extract its neighbor's heap entry.
Merge the two domains (smaller to the larger):
If merging a parent into one of its holes:
Place the resulting domain into the set of the parent.
If merging a hole into an interior global domain:
Place the resulting domain into the set of the hole.
Perform the merge:
Travel the neighbor's boundary and accumulate.
Travel the head's boundary and accumulate.
Advance the accumulator's age.
Call the merge callback routine.
Merge the pixel sets (smaller domain’s tags change).
Add the subsumed domain's holes to the combined domain's hole list.
Travel the combined boundary and accumulate.
Enumerate the accumulator:
If an entry is young (on the combined boundary):
Find the cost of merging the domain with the new combined domain.
Save as the best cost if better than the current best cost.
If the entry's heap entry points to either original domain:
Find the entry's best neighbor.
Update the entry's heap entry with best neighbor information.
Or for older entries (not on the combined boundary):
Move their domain to the combined domain's hole list.
Insert an entry in the heap for the combined domain using the best cost.
For each hole of the combined domain:
Find its best neighbor and update its heap entry.
End of loop

Figure 4.3
Greedy Domain Extraction Algorithm

38

4.5 Proof of Correctness

4.5.1 Definitions

A heap entry contains references to a pair of adjacent domains. A pair of adjacent domain
references is a boundary. An entry also contains the cos# of merger of its domain pair. The more
positive the cost associated with the merger of two domains, the more favorable the impact on
the global cost function if the two domains are merged. The most positive entry is always at

the head of the heap if the greedy order is maintained.

A valid heap entry has the following properties:

The boundary to which it refers is part of its associated domain’s outer boundary.
The neighbor to which it refers has its own identity (It has not been merged with
another domain) and is an actual neighbor of the heap entry’s associated domain.
3. The cost of merger in the entry is the correct cost of merger with the indicated
neighbor.

N —

A boundary between two adjacent domains is covered if:

Neither domain is a hole of the other and
Either of the adjacent domains’ heap entries contains the boundary, or at least one
of the domains’ heap entries contains a boundary that has a more positive cost.

o=

or:

One domain is a hole of the other and
The hole’s heap entry either contains the boundary or contains a boundary that has
a more positive cost.

N —

4.5.2 Overview

We first prove that a heap entry persists for each domain and that all the boundary of the
partition remains covered by a heap entry. We then prove that all heap entries remain valid and
that the best merge boundary is always in the heap. Finally, we prove that the best merge

boundary is at the head of the heap.

4.5.3 Details

Lemma 1. Every domain in the partition has a corresponding merge heap entry.

39

The proof is by induction on the number of merge operations. By definition, when the heap is
built, every domain has a corresponding heap entry. When two domains are merged, their

corresponding heap entries are extracted. A new entry is added to maintain the invariant.

Lemma 2. All boundaries in the partition are covered by an entry in the merge heap.

The proof is by induction on the number of merges. Certainly, every boundary is covered
initially. Since each entry in the heap contains the best merge candidate for its associated
domain, every portion of its outer boundary is covered. Since all of the outer boundary of

every domain in the partition is covered, every boundary in the partition is covered.

The only boundary sections that are effected by a merge are those that touch the merged domains.
These sections are those on the outer boundary of the merged domain and those on the outer
boundaries of the holes of the merged domain that touch the merged domain. The outer
boundary of the merged domain is covered by the new entry inserted in the heap after the
merge. Since the heap entries for each hole of the combined domain are adjusted after the

merge, the hole boundaries remain covered.

Lemma 3. The boundary with the most positive cost in the partition is in the heap.

The proof is by contradiction. Suppose that the best boundary were not in the heap. By
Lemmas 1 and 2 every domain in the partition has a corresponding heap entry and all
boundaries are covered by entries in the heap. If the boundary is between two domains that
are not holes of one another, at least one of the adjacent domains’ heap entries must refer to a
boundary with a more positive cost. Since this boundary would have a more positive cost, and
is in the heap, the best boundary must be in the heap. If the boundary is between a hole and its
parent, the hole’s heap entry must either contain the parent boundary or a boundary that has a

more positive cost. Again, a contradiction.

Lemma 4. All entries in the heap remain valid.

40

The proof is by induction on the number of merge operations. If after N merges the heap

contains all valid entries, it does so after N+1 merges:

e The only entries that could be effected by a merger are those associated with
domains that abut either to the interior or to the exterior the two merged domains.

e Any heap entry for a domain that touches the combined outer boundary and
contains as its neighbor member either of the two prior to combination domains is
adjusted after the merge operation.

e The heap entries for all holes of the combined domain are adjusted after the
merger and therefore remain valid.

Lemma 5. The head of the heap contains the merge entry with the most positive cost.

By lemma 3 the most positive cost merge entry is in the heap. By definition of the operations
of insert, extract head, extract, and adjust, the head of the heap contains the entry with the

most positive cost.
Theorem 1. Domains are merged in the proper greedy order.

The proof is by construction. The merge heap remains valid by Lemma 5. The head of the
heap contains the best merge candidate by Lemma 4. Every boundary in the partition remains

covered by Lemmas 1, 2, and 3.

4.6 Algorithmic Complexity

The operations performed during a merge fall into four categories: set tag maintenance, heap
maintenance, boundary traversal, and external operations performed by the boundary traversal,
domain merger, and cost function callback routines. The domain merger routine is called once
for every merger. The boundary traversal callback routine is called once for every boundary
separator along the external and internal periphery of the merged domains. The cost function
routine is called once for every domain touching the same periphery. For this analysis we

assume that all three callback routines are O(1). This requirement calls for careful

construction of the domain model.

41

Given an image @, let N = |(I)| designate the number of its pixels. If T is the target number
of domains in a pattition of @, then the number of merges necessary to reach T is M. If
T<<N,thenM - N as T —>0.

Since when domains are merged, the smaller domain is merged to the larger, the total number
of membership tag changes for N merges is O(N log N) 3. Additionally, each merger results
in a boundaty traversal and potential cost function, O(1), and heap operations, O(log N), for

each adjacent domain. Unfortunately, the number of potential boundary locations and the

number of neighboring domains encountered during a traversal is O(N). For N merges, the

overall complexity is:
O(NlogN) +O(N)-(O(N) + (O(1) + O(log N)) - O(N)) = O(N *log N).

where the complexity terms are for membership tag changes, boundary length traversed

(including boundary callbacks), bulk callbacks, and heap operations respectively.

Although the length of the periphery of a domain is O(N), this bound is not often

approached in practice. Let Be(D)‘ designate the length of the external boundary of a

domain, and‘Bh (D)‘ designate the total boundary length of all the holes in a domain. If the

following restrictions are placed on the domains of @

Largely Convex

Be(D)‘ < Cl\/m

dc,:VD €,
Largely Whole

3c,:VD e ®,[B, (D)| < ¢, ||
Then the overall complexity reduces to:

O(N)-O(/N)-O(logN) = O(N -+/N -log N).

42

4.6.1 Dynamic Size Limiting

The complexity bound can be reduced still further by placing a dynamic limit on the maximum
domain size. For instance, when a large number of domains remain in the partition, the
maximum domain size can be kept smaller than when a small number of domains remain. A

convenient bound (from a complexity perspective) to place on the size of a domain is
N
c. 2{|092fJ

Dynamic size limiting divides the original problem into 10g,(N) subproblems that can be

, where Z is the number of domains remaining.

summed thusly:

log, N-1 O(N)
> SR -0llog, 1) (¢2").
T=0
The first term of the sum is the number of merges in the subproblem, the second term is the
complexity of heap operations for each merge in the subproblem and the third term is the

complexity of the boundary and neighboring domains for each merge in the subproblem.

After taking N outside and canceling terms, this reduces to:

log, N-1

~-0(N) 2, Oflog, 2T)

Since the sum is bounded by O(log® N), the overall complexity reduces to:
O(N log® N).

4.7 Summary
We presented a new greedy domain growing algorithm for image model extraction. The
algorithm is independent of the exact image model which may contain both bulk and boundary

components. The model is updated via callback routines as the algorithm progresses.

We initialized the algorithm by creating one domain for each image pixel. We used a heap to
maintain the greedy ordering and developed update and extraction methods to aid in heap

maintenance. We developed the boundary traveler and showed how local boundary

43

characteristics are re-measured after each domain merger. We kept track of neighboring
domains of a boundary traversal via a fixed size accumulator. We showed how the algorithm
handles inclusions or holes which may form from the merger of two sibling domains or

disappear via merger with a parent.

We proved correct greedy order through the idea of boundary covering. A complexity bound
of O(Nlog® N) was developed by dynamically increasing maximum domain size as domain

count falls.

44

5. Domain Smoothing

5.1 Motivation

Once an image has been partitioned into a set of domains it is often desirable to refine the
domain boundaries. For example, the boundary may be somewhat irregular or “noisy” due to
imperfections in the extraction procedure or noise in the underlying image. An irregular
boundary is quantitatively different from a smooth boundary in two ways. It is longer and is
more random. Since the primary motivation of partitioning a digital image is most likely to be
to simplify its description, both of these properties are undesirable in that they lengthen the
description of the partition. Irregular boundaries have another intangible property that makes
them undesirable: they are not “visually pleasing”. With a proper smoothing procedure, one

can both shorten the description and produce a more visually pleasing partition.

I[B]] White_ pixels define
— — domain 1.
Grey pixels define
I C| ;
B - — domain 2
A | Lettered pixels may
be candidates for
| | reclassification.
I || D
F E ||
Figure 5.1
Irregular Boundary

In Figure 5.1 the gray domain contains only 27 pixels, but the boundary between it and the
white domain is 32 separators long. In addition the boundary has little structure in that if one
follows the boundary it is difficult to predict what direction it will next take using only

information about what direction it has taken thus far. Intuitively, the pixels labeled with

45

letters seem to be the loci for much of the boundary’s length and irregularity. For example, if
pixels E and D were reclassified, as white and gray respectively, the boundary length would be
reduced by four and become more regular. The rest of this chapter develops a formal

procedure for making such reclassifications.

5.2 Background

There is one body of significant work in boundary relaxation that originates with the Gibbs
field paper of Gemen and Gemen’. After introducing a so called edge process embedded in a
Gibbs field, certain local boundary configurations or cliques were assigned a more favorable
energy and this additional edge information was used to improve the results of a simulated
annealing image restoration algorithm. Variations of this technique have been used for image
segmentation via region growing and for boundary relaxation. A recent example is that of
Hussain and Reed!'* who used the technique in a segmentation based image compression

method.

Another technique that has developed a significant following is the method of Snakes!>. In this
method a tentative boundary, or Snake, is optimized by balancing an attraction to image
features with an internal energy related to spline continuity. It seems especially suited to
interactive specification of image contours due to its sensitivity to the position of the initial

tentative boundary.

5.3 Boundary State Machine

While previously reported methods are quite powerful, they seem somewhat ill-suited to the
task of efficiently and autonomously smoothing domain boundaries. If we seek to develop a
fast deterministic procedure, we first might ask: What is the asymptotic limit? An obvious
limitation is that each boundary pixel must be visited at least once. If after one move is
performed, the number of pixels revisited to determine the next desirable move is limited to a
constant times the number of pixels just moved, the number of pixels moved must be counted.
Defining B to be the number of boundary pixels and M to be the number of pixels moved,

the lowest possible algorithmic complexity is:

46

OB+ M).

To achieve this limit the initial pixel search set must to limited to an integer multiple of the total
boundary length. One way to do this is with a state machine that traverses the boundary

between domains.

In a boundary traversal, we follow the boundary as one would follow a maze. For every
traversal there is a home domain. At each pixel corner a direction decision is made: either turn
left, right, or continue straight. The path traversed follows the boundary of the home domain
without diverging. We require that all home domains be connected so that a traversal is always

closed. ‘That is, it always returns to the starting point without doubling back.

A boundary separator is /labeled with the event associated with the immediately preceding pixel
corner. For example, on Figure 5.1 starting at the boundary separator above pixel C and
traveling in the counterclockwise direction, the first ten movements are: 7/rlrslsr. The
counterclockwise direction of travel is the default in the rest of the discussion, but using mirror

symmetry simply interchange right and left when reversing direction.

The last few turn decisions make up the machine’s state. Using regular expression syntax, we
can encode the state at the edge just below pixel E in Figure 5.1 as /4'/r. Formalizing this
procedure, the oldest event is written on the left and more recent events follow to the right. In
this example we have limited the state to 4 symbols, but we may expand that as necessary. We

now turn to the task of finding boundary states that can be used to perform smoothing,.

5.4 Rasterization

While boundary length is a significant factor in measuring edge smoothness, it cannot account
for all cases where a boundary may be considered irregular. For example the pixel labeled A in
Figure 5.1 is visually perceived as a “bump” on a diagonal line but moving it to domain one
does not change the overall boundary length. We now use a well known result from computer

graphics'® to develop a more powerful smoothness measure:

47

The resulting smoothed boundary should contain the smallest number of raster drawn lines and curves

consistent with the underlying pixel intensity approximation function. Raster lines and curves have the
simple property that they shift at most one colummn at a time if the absolute value of their slope is greater
than or equal to 1 and at most one row at a time otherwise.

Using the raster concept combined with the boundary state machine developed previously, we

can now make the following definitions:

A raster section 1s a contiguous set of movements that obeys the rules for raster
drawn features.

A left straight section is a contiguous straight section immediately following a left turn.
A bump 1s a left turn following a left straight section.

A straight section is a non-null set of contiguous straight movements.

AN odd turn section, abbreviated o, is contiguous odd number of alternating turns.
An left turn section, o, is an odd turn section beginning with a left turn.

An right turn section, oy, is an odd turn section beginning with a right turn.

A corneris a straight section followed by a left turn section followed by another
straight section.

A dimple is the right turn bump.
An indent is the right turn corner.
A raster break occurs at the last turn of a bump, corner, dimple or indent.

5.5 Boundary Cost Function

Before developing some smoothing transformations, let’s first assignh a cost to each

transformation. The cost function has two major components, the boundary term and the

underlying model error term. If we assume, that before smoothing, the boundary is generally

in a favorable position relative to the underlying model, a smoothing transformation will most

likely increase the error between the model and the source image. We can think of a

smoothing transformation as increasing the smoothness of the boundary at the expense of

increasing the underlying model error.

If the following definitions are made:

Al - 'The reduction in number of separators in the boundary
Ab - The reduction in the number of raster breaks in the boundary
AE - The increase in error in the undetlying intensity function model

48

the cost associated with a boundary transformation can be formulated thusly:

AC = -AE +a - (B-Al +3- Ab)

whete @, f, and O ate arbitrary constants. In this formulation, Al and Ab are positive for a
decrease in boundary length or raster break count respectively. Any decrease in boundary
noise is played against any increase in model error. The more positive the cost function, the

more favorable the outcome of the boundary transformation.

The raster criteria allows us to split the boundary component of the cost function into two
terms, one proportional to the boundary length and another proportional to the number of
raster breaks. If a transformation is only made if it results in a positive AC, the parameter &

controls the degree smoothing.

5.6 Smoothing Transformations

Given that reducing the number of boundary separators and raster breaks produces a smoother
boundary, we can use certain states in our boundary follower as fransformation markers. As
discussed previously, the signaling boundary features are the bump, corner, dimple and indent.
If we assume that we traverse each boundary in both directions, it is only necessary to account
for either the left or right handed features. We arbitrarily choose left handed features for the
rest of the discussion. Using regular expression notation, Table 5.1 shows the bump and

corner transformation markets.

Bump Is*]
Corner | s/r))*s
Table 5.1

Transformation Markers

A transformation marker exists at every boundary locus where it is possible to move a
connected set of pixels from one domain to another and reduce the number of separators or
raster breaks. If we assume a counterclockwise direction of travel and left handed marker

features, the pixels to be moved, or move set, are those under the bump or inside the corner.

49

Whether or not a pixel is moveable and other details of the move set are discussed in Sections
5.9 and 5.10. For now, we assume that only two domains are involved in each proposed

transform and that all relevant pixels are moveable.

5.6.1 Move Sets

On Figure 5.1 the pixels labeled with letters are examples of single pixel move sets. Move sets
are not restricted to a single pixel. The number of pixels in the move set is the product of the
length and depth of the set. The length of a bump move set is one plus the number of straight
events in the bump marker. The length of a corner move set is the number of left turns in the

corner marker.

The depth of a move set is dependent upon the boundary comfext (state) in which the
transformation marker is embedded. The context immediately preceding a transformation
marker is called the prefix and that following is called the pos#fix. The number of immediately
contiguous straight events in the prefix and postfix determine the move set depth. If the
straight sections in the prefix and postfix are of different length, the shortest is the controlling

straight length. The depth of a move set is one plus the controlling straight length.

Note that the corner transformation marker includes one straight section at each end. This

straight section is not counted in the corner depth calculation.

Figure 5.2 shows bump and corner markers with length and depth of two. The arrows indicate
the direction of movement. For example, if the arrows point to the right, the black pixels are
to be moved from their current domain to the domain of the pixels just to their right. Depth is

counted parallel to the movement axis and length perpendicularly.

50

White pixels define
domain 1.
Non-white pixels
define domain 2

4_
' . Example bump and
P corner move sets are
' . shown in black.
Both move sets have
length and depth of 2.
H R
Arrows show the
. ."’ movement direction.

Figure 5.2
Move Sets

5.6.2 Limiting Move Depth

Up to this point, we have placed no limit on the size of a transformation move set. Intuitively,
the larger the area of a transformation marker, the lower the likelihood of a favorable cost
outcome for the transformation. Since large area transformations are quite unlikely and
computationally expensive to evaluate, it is convenient to limit the move set depth to keep the

computation efficient.

It is also desirable to be able to partially reduce a transformation marker. A partial reduction is a
reduction of the depth of the marker. A depth reduction does not change a marker to one of a
different type. A reduced marker retains its type if its depth before reduction was greater than

one.

Since a reduced marker can be completely transformed simply by making multiple passes
through it, a natural simplification is to limit the move set depth to one. Multiple passes peel

away each transformation marker as layers of an onion. On

Figure 5.2 the pixels immediately adjacent to the arrows are members of the depth one, or

string, move sets.

51

5.7 Determining Ab

A transformation marker’s prefix and postfix determine its reduction in raster breaks, Ab.
Contexts that produce a non-zero AD are called active; others are inactive. An active prefix’s
mirror image is an active suffix. An Zsolating prefix ends with s and an isolating postfix begins
with 5. Markers of depth two or greater have both an isolating prefix and an isolating postfix

and are obviously inactive.

If a marker feature is deeper than one, its move set is isolated and Ab resulting from a
transformation is trivially zero. If a marker feature has depth one, its transformation may or
may not result in a reduction in the number of boundary raster breaks. For example, a bump
in the context srlsrls*rsirs reduces to srls*/rs and there is no net change in b, but a bump in the
context rs7ls*/rsr reduces to rsr for a net reduction of two raster breaks. Cleartly, 757 is an

example of an active prefix and s7is an example of an inactive prefix

Active contexts generally must contain a mirror element of their transformation marker. Odd
turn sections are useful for absorbing the core of the corner transformation marker, which
happens to be an odd turn section itself. Any corner transformation that reduces the raster
break count must have an opposing odd turn section as a prefix or postfix. Odd turn sections
as prefixes and postfixes are independent. If both are present Ab is twice as large as if only

one were present.

Marker Postfix Ab
Bump rstost 1
Bump rs*r ot
Corner OrS 1

L1n either or both positions.

Table 5.2
Transformation Marker Active
Postfixes

52

Bump transformations are more complex than corner transformations. The opposite of a
bump is a dimple. A dimple must be a prefix or postfix for a dump transformation to reduce
the number of raster breaks. Unlike odd turn sections, bump prefixes and postfixes are not
cumulative. ADis identical if either one or both are present. Additionally, a bump marker with
the proper surrounding context may also include up to two indents. ‘The maximum |Ab|

occurs when a bump marker has an indent prefix and dimple postfix or vice versa.

5.8 Determining Al

It is desirable to define the boundary length, |, in a manner that associates a smaller length
(lower cost) to a partially reduced transformation marker. The conventional method of
defining boundary length is to count separators, which is fine for bump transforms but

inadequate for corner transforms.

If pixel E on Figure 5.1 was moved from the gray to the white domain, the number of
separators in the boundary would be reduced by two. In this case, the separators to the east,
north, and south of pixel E would be replaced by one to the west. It is clear that for a bump

transform involving only two domains, the number of separators is always reduced by two.

Pixel A on Figure 5.1 is an example of the simplest corner transform move set. If pixel A were
transferred from the gray to the white domain, the separators to the north and west would be
replaced by separators to the south and east. 'This result generalizes to all corner

transformations. The net change in the number of boundary separators is zero.

53

5.8.1 Diagonal Separators

| White pixels define

domain 1.

| Non-white pixels
define domain 2

| Separator count: 16.

| Perceived boundary

| length: 8\/5.

| Diagonal separators
— substituted at
| embedded pixel sites.

Figure 5.3
Perceived Boundary Length

The asymmetry in the conventional boundary length accounting for bump and corner
transforms is due to an artificially high cost placed on diagonal lines. A diagonal line in our

four direction boundary consists of pairs of alternating turns. In the context of the diagonal

boundary on Figure 5.3 each turn pair has a perceived boundary length of J2.

Conceptually, if a pixel is corner embedded in only two domains we can replace the horizontal and

vertical separators abutting it with a single diagonal separator. If we approximate the V2
perceived length of diagonal separator with 15, we can retain integer weights simply by scaling
all costs. Our new conceptual boundary has two types of separators. We designate diagonal

separators with & and rectilinear separators with .

54

5.8.2 Boundary Length Accounting

N
N

4

N |
N A

Isolated move set
boundary transform
length accounting:

Corner:

2d +2r —» 3d
50— 45
Al=1

Tall Bump:

2d +2r — 2d
50— 30

Al =2

Figure 5.4
Boundary Length Accounting

Figure 5.4 shows example boundary length accounting for example corner and bump
transformations. Boundary length calculations are performed against the conceptual boundary
previously defined. Diagonal separators are assigned a weight of 1.5 and rectilinear separators
are assigned a weight of 1. The example bump transformation shown is a 7/ bump. A tall
bump has straight events at the beginning of its postfix and at the end of its prefix. A short
bump is surrounded by right turns. A mixed bump has a turn adjoining in the prefix and a
straight event adjoining in the suffix or vice versa.. A fower bump has no central straight events.

Table 5.3 summarizes Al for transformation marker types and subtypes. Marker length is

designated in the table.

55

Marker Type Separator Mutations Al

Bump Shallow | (m—2)r+2d — mr 1

Bump Mixed (m-Dr+2d > (Mm-r+d 1.5

Bump Tall mr+2d — (m-2)r +2d 2.0

Bump Tower ar—r 2.0

Corner | All md +2r — (m+1)d 0.5
Table 5.3

Transformation Boundary Length Changes

5.9 Convergence

Up to this point we have assumed that only two domains are involved in a boundary
transformation. If this requirement is met, it is clear that the algorithm must converge since
after every transformation the conceptual boundary length is reduced. When more than two

domains abut a transformation, more analysis is needed.

5.9.1 Interfering Domains
When the pixels of a transformation marker touch more than two domains, at least one of the
domains is an nterfering domain. 'The home domain is by definition a non-interfering domain, so

interfering domains are always neighboring domains.

On Figure 5.5, the gray domain is the home domain. Domains C and D are receiving domains.
A receiving domain is the domain to which moved pixels are transferred. Every transformation
has one home and one receiving domain. The receiving domain must touch every pixel of a

move set in the direction of transfer.

Domains A, B, and E are interfering domains. Domain B causes splitting interference. Its
presence splits the destination of the move set into two domains. This has an effect on domain
boundary accounting but it is precluded in the present algorithm simply because it increases the
complexity of domain management. It is possible to account for the presence of splitting

interference in boundary convergence accounting, but we do not do so.

56

E E E E E E E Home domain in
gray. Move sets in
E E E E’ E E blgck. Opposition
primed.
Dllpl[p . A Domains A, B and E
are interfering.
i . AT 1A | pisallowed Bump

transformation.
Splitting interference.

A
FI|F . B || [Disallowed Corner
C

transformation.
C || [Opposition
interference.

Figure 5.5

Interfering Domains

Domain E is an gpposition interfering domain. Opposition interference is indicated when a one
of the pixels of a corner transformation move set is not corner embedded and a conceptual
diagonal separator cannot be formed. Like splitting interference, opposition interference can
be accounted for in Al calculations, but is precluded in the present algorithm. The primed
pixels in Figure 5.5 are the opposition set of the black corner move set. The opposition set of a
corner transformation marker must lie in a single domain or the transformation is not

performed.

5.9.2 Subtractive Interference

Domain A is a subtractive interfering domain. Its presence decreases the amount of boundary
smoothing produced by the transformation. A bump transformation marker can have a
subtractive interfering domain at each of its ends. A subtractive interfering domain reduces the
Al of a marker end to zero. We have handled splitting and opposition intetference by
precluding moves where they occur. We will not preclude moves with subtractive interference,

however, and we must take care to assure that it does not effect convergence.

57

Previously, we proved that when all transformations were non-interfering, the algorithm
converged to a fixed point. The key to the proof was a requirement that Al be negative for all
transformations. We relax that requirement for transformations with subtractive interference.
Al for such transformations must be non-positive. However, the requirement for AE is

tightened. When Al is zero, AE must be negative.

Since at any given total boundary length transformations that leave the boundary length
unchanged must reduce the model error, the algorithm is guaranteed to converge at any total
boundary length. Since no transformation is allowed to increase the boundary length, the

algorithm must converge at the smallest attained boundary.

5.9.3 Summary of Convergence Requirements

e Transformations with splitting interference are disallowed.
e Transformations with opposition interference are disallowed.
e Transformations with subtractive interference must have negative AE

5.10 Correctness
Before smoothing, the domains of our image partition are connected. Connectedness is

defined as follows:

o Fora connected domain, there is a path between the centers of any two pixels in the domain that
makes only vertical and horizontal moves and that only visits pixels in the domain.

The smoothing algorithm must maintain connected domains. To do this we introduce the
notion of a connection hull. On Figure 5.6 move sets for a corner and bump transformation
marker are labeled with M. The connection hulls for the example transformation marker are

labeled with C.

Before precisely describing the connection hull, let’s state the first correctness requirement.

o The connection hull of a transformation marker must lie completely within the marker’s homse
domain.

58

Home domain in
gray.

Move sets labeled M.

M1 S Connection hulls
vl el e labeled C.
c||C
C||M
C||M
Figure 5.6

Connection Hulls

The connection hull is slightly different for the two types of transformation markers and can be
described precisely once we make the following definition. The nezghbor set of a transformation

marker includes the pixels touching its move set along edges that are not part of the marker.

o The connection hull of a bump transformation marker includes the pixels of its neighbor set that
touch its move set in the direction opposite to that of movement.

o The connection hull of a corner transformation marker includes its neighbor set and the pixcels not
in its move set that touch its neighbor set along at least two edges.
As can be seen from Figure 5.6 the connection hull consists of the pixels beneath the
transformation marker. The purpose of the connection hull is to provide a path around the

pixels of the move set. If the hull is not complete, the transformation is disallowed.

5.11 Computational Complexity
Obviously we must traverse every boundary site at least once. Since the move depth is limited

to one, this traversal is O(B), where B is the total boundary length of the partition. Each

move transformation is O(Im|), where |m| is the number of pixels of the move set. This

bound is only possible if we use an O(1) method like that of Chapter 3 for determining the

59

error change in the underlying model. If the sum of Im| for all move transformations is M,

the complexity of all move transformation is O(M).

Once a transformation is made, we must re-traverse the effected boundary to see if another

transformation should be made. The total re-traversal is also O(M). The overall algotithmic

complexity is
OB+ M).

5.12 Limitations

When a transformation marker is encountered during a boundary traversal, it is not possible to
know if making a transformation reduces the number of raster breaks, b, in the boundary
without first looking for an active postfix. A smoothing algorithm that is causal is
computationally preferred. The complexity of the state machine increases fairly quickly if all
cost function parameters cannot be determined at the point at which the transformation
marker is first discovered. There does not seem to be any way to avoid non-causality and still
use Ab as a cost function term. Fortunately, experiments have shown that the algotithm

exhibits very good performance when ¢ , the arbitrary weighting placed on Ab, is set to zero.

The algorithm’s key limiting constraint is the inability to increase the boundary length if doing
so would produce a better match to the underlying model. If, for a given domain, all of the
unsmoothed boundary lies within the optimal smoothed location, the algorithm’s result also
lies within the optimal location. A key observation is that no part of the boundary can move
horizontally or vertically beyond the locations of the initial unsmoothed horizontal and vertical

maxima and minima.

5.13 Experiments
We now present the results of using the smoother on one synthetic and one natural image. We

use the following parameters

AE = AMSE
0=0

60

p=1
with the smoothing cost function:
AC=-AE+a-(f-Al+5-Ab)
defined in Section 5.5.

Since 0 = 0, the raster break count is not used in the cost function and it reduces to:
AC = —-AE + - Al

The results without Ab are quite good and Ab calculation has been deferred to future work.

Results for one synthetic image, Syn2, and one natural image, Lena follow.

Figure 5.7 is the synthetic image Syn4. Syn4 consists of three constant patches laid over a
vertical ramp intensity function. The entire image is overlaid with additive noise, o =32 . The
average gray levels for domains one - three are 160, 224 and 64 respectively. With the origin in
the upper left and coordinates increasing down and to the right, domain number four’s

intensity functionis @ =Y.

61

Figure 5.7 Figure 5.8
Synthetic Image Syn4 Four Domain Partition of Syn4

Syn4 is designed to be quite difficult to partition. The domain extraction algorithm of Chapter
0 produced the domains of Figure 5.8. The signal to noise ratio at the lower boundary of
domain 2 is — 00, and indeed the extraction procedure has problems with this boundary. If the
noise suppression factor is too large, domain 2 becomes too small. If it is too small, it spreads
over the bottom of the image. Figure 5.8, corresponding to a suppression factor of 768, is the

best result attainable.

62

Figure 5.9 Figure 5.10
Smoothed Syn4, o = 256 Smoothed Syn4, o = 512

The surrounding figures show the result of smoothing the domain boundaries with increasingly

larger smoothing parameter, &.. For lower values of o (Figure 5.9, Figure 5.10) smoothing is

highly local.

Figure 5.11 Figure 5.12
Smoothed Syn4, o = 1024 Smoothed Syn4, o = 8192

63

As o increases the degree of smoothing increases. The best results are attained for o = 1024.

The number of raster breaks is finally reduced to the number in the underlying image at o0 =

8192.

Figure 5.13 Figure 5.14
Smoothed Syn4, oo = 100000 Smoothed Syn4, Restorative mode, o0 = 1

Figure 5.13 shows how the algorithm converges to fixed points. One domain has collapsed
completely and the circle is significantly distorted. Increasing a further results in three fixed

points.

Figure 5.14 shows the results of smoothing the initial partition against the image Syn3 (Syn4
without additive noise). The smoothing factor is set to one for this restorative experiment.
The misplacement of the bottom edge of domain 3 is quite small. One half of the boundary is

one raster row too low and the other half is one raster row too high.

64

Figure 5.16
Figure 5.15 Smoothed 100 Domain Lena, oo = 1024
Unsmoothed 100 Domain Lena

Figure 5.15 shows the unsmoothed domain boundaries for one test partition of Lena with 100
domains. Figure 5.16 is the same partition smoothed with a smoothing factor, &, of 1024. A
total of 855 transformations were performed to produce Figure 5.16. Raster breaks are shown

as black dots in both figures.

Lena Boundary Separators Raster Breaks PSNR | MSE

Unsmoothed 7946 946 27.4 118.5

Smoothed o0 = 1 7525 572 27.8 106.8

Smoothed o = 1024 | 6182 296 27.1 127.3
Table 5.4

100 Domain Lena, Boundary Data

Table 5.4 is boundary data for the unsmoothed partition and smoothed partitions with two
different values of a. When o is small the error in the underlying model actually decreases and

only increases slightly with increased smoothing. The boundary length and number of raster

breaks are decreased proportionately as smoothing increases.

5.14 Summary
We developed the raster-break as a formal measure of boundary noise in an image partition

and used it to design a state-machine boundary smoothing algorithm. We applied the moment

65

operators and error functions of Chapter 3 to the smoother’s cost function. We showed the

computational complexity of the smoother to be O(B + M) whetre B is the boundary length

of the partition and M is the number of pixels moved.

66

6. Domain Boundary Coding

6.1 Background

The problem of coding domain boundaries in digital images has been addressed previously
from two perspectives. Chain coding'” is a method of coding a contour in the image plane with a
series of movements (north south east west or right left forward backward) along the contour.
Raster neighborbood mdz’ngm, scans a digital image in raster order and uses classification
information available from previously decoded pixels (above and to the left of the current
pixel) to develop a context dependent probability estimation of the classification of each pixel. This
estimation is used to reduce the information needed to make a classification. Once all pixels
have been classified, a boundary description can then be inferred by placing a boundary

element between any two pixels with differing classifications.

Most work with contour coding has been on black/white images. We ate interested, however, in
coding the boundaries between domains in a partitioned genera/ (four or more classifications)
image. As we next show, there are subtle but important differences between contours on a

black/white image and those on a partitioned general image.

6.1.1 Chain Coding

Chain codes can be divided into two major families, the distinguishing feature being the
number of possible directions of movement at each point in the chain. With the recent
application of context dependent probability estimation to four-way chains!?, the desirability of

eight-way chains is somewhat attenuated. We focus exclusively on four-way chains.

Three types of information must be provided for a general-purpose boundary chain code:
chain starting points, chain direction information, and chain termination indicators. When
chain coding the boundary of black/white images!?, each chain is guaranteed to teturn to its
starting point. Obviously, no two black features can touch each other or they would be the
same feature. This characteristic allows se/f-terminating chains, where termination information is

implicitly delivered by return to the starting point.

67

Reliable termination conditions without backtracking allow for simplified direction
information. Only three possible decisions are possible at each point on the boundary, turn
left, right or go straight. The base information per chain event is reduced from two to 109, (3)
bits. Unfortunately, when chain coding the boundaries of a general image partition, things get

more complicated and some form of redundancy must be introduced.

One way to deal with the termination problem is to completely traverse the boundary of all
domains in a partition?’. Unfortunately, this results in the traversal of all boundary separators
twice. For example a vertical separator is encountered once when traversing the domain to its

left and again when traversing the domain to its right.

Another possible solution is to dispense with the abstract boundary entirely and trace through
the centers of a domain’s peripheral pixels?. This works well for domains that are only one

pixel wide. However, it still does not eliminate double traversal for domains wider than one

pixel and some form of backtracking is needed to deal with domains with shapes like I—or

6.1.2 Raster Neighborhood Coding

The most common use of raster neighborhood coding is to classify pixels on black/white
images such as digital facsimile transmissions. A #eighborhood template gives a context dependent
probability estimation of the black/white value of a pixel. If the context dependent
probabilities of occurrence of black and white pixels are unequal, the estimate reduces the
information necessary to determine the classification of a pixel. The degree to which the
probabilities of occurrence of the various symbols in an alphabet differ is called the probability

skew of the alphabet.

The base information needed to code a two symbol alphabet is one bit per pixel. Any symbol
probability skew in the context dependent probability estimator reduces this value. Clearly,
once all pixels have been classified, contour information is readily available. An International
Standards Organization (ISO) standard called the JBIG (Joint Bilevel Image Group) bilevel

image compression algorithm is perhaps the best known implementation of this technique.

68

On the general image, at least four classifications, or colors, are needed to unambiguously
delineate domain boundaries. Although the four-coloring problem (coloring all domains of a
partition with only four colors and assigning different colors to all pairs of adjacent domains) is
difficult, if one was available the raster neighborhood coder could be extended directly by

doubling the number of possible pixel classifications.

One can dispense with the four-coloring and extend the raster neighbor coder with the simple
expedient of assigned edges’!. 1f pixels are thought of as square two dimensional lattice sites,
there is a separator site to each pixel’s north, south, east, and west. A separator site may or may
not be oceupied. Bach pixel is assigned two of the four separator sites that surround it. Since for
an image with N pixels there are 2N possible separators, this assignment is sufficient to cover

all possible partitions.

Typically, for a raster scan, each pixel is assigned the separator sites to its south and east. If a
separator site is empty (no separator), then the two pixels on either side of the site are in the

same domain. Ifitis full (a separator exists), they are not.

In addition, the probability estimation context is expanded to hold probability estimates of four
symbols for each neighboring pixel, indicating the presence of zero, either, or both separators.
For a four symbol alphabet, the base coding rate is two bits/pixel. Again, any symbol

probability skew in the context dependent probability estimator reduces this value.

One disadvantage of the raster technique is that a decision must be made for every pixel site in
an image even when the number of boundary separators is fairly sparse. The main advantage

of the method is that it is inherently single pass and has highly local memory accesses.

6.2 A Boundary Partition Classification

P

We use the domain count, of a boundary pattition and the pixel count, N, of its

bl

underlying image to develop a boundary partition classification. 1f |P| > , then a partition is

log, N

dense. 1f |P| < N , then a partition is sparse.

69

Recall from Chapter 1 that a piecewise smooth image partition cannot be dense. Further, when
coding an image via a piecewise smooth approximation at the lowest bit rates the partition will
be sparse or nearly so. Cleatly, to code a piecewise smooth image model at the lowest possible

bit rate, the boundary code must be optimized for sparse partitions.

For sparse partitions the chain code has an intuitive appeal as the lowest cost approach to
boundary representation - if the problem of chain termination can be addressed. The stroke

code of the next section does just that.

6.3 Chain Coding via Strokes

The stroke code develops a partition via a series of s#okes. Each stroke consists of a start point,
and one or two boundary chains. Each chain of a stroke is terminated upon encountering a
previously decoded stroke or the image boundary. The key idea is that comer encounters with
previously decoded strokes may or may not terminate a stroke. Further information is supplied

by the encoder to disambiguate such encounters.

Six small domains
plus surround.

-] |

Start points labeled

. . with S.

Stroke 5 has a corner
encounter.

Stroke 3

1 |
' |l. .I = = = Stroke 4

=== — — — Stroke 5

; I | Stroke 1
BN Sk 2

Figure 6.1
Stroke Example

70

Strokes are decoded in turn: start, chain and termination information is intetleaved in the code
stream. Once the boundary is fully specified via strokes, domains may be grown by recursively
joining groups of pixels that do not have a separator between them. Figure 6.1 has six domains
of 1, 2,5, 6, 8 and 9 pixels plus the surround. As can be seen, only five strokes are necessary to
completely specify the boundary between these domains. After first covering some
preliminaries, we develop stroke start points, move to termination disambiguation and then

apply context dependent probability estimation to stroke chains.

6.3.1 Binary Decisions

The entire stroke code is comprised of binary decisions. Each decision is a yes or no answer to
a question posed by the decoder. The information content of each question depends upon the
uncertainty of its answer. Shannon? developed a quantitative measure of the average
information in a series of binary decisions. If P, is the probability of the least probable
outcome and P,, is the probability of the most probable outcome in a sequence of decisions,

then the entropy of the decisions is:

H =-p,log, p, - p, 109, P,.

If the probabilities of occurrence of each symbol are fixed, the total information content of a
binary code is d-H where dis the total number of binary decisions in the code. We use a
technique called the Laplacian estimator that dynamically develops estimated decision
probabilities from the probability of their occurrence thus far in the code. If after n—1
decisions of a series of decisions p,,(N—1) is the estimated probability of the occurrence of
the most probable outcome, then the information content of a most probable outcome
occurting at decision N is —10g, p, . Similatly, the information content of a least probable
outcome occurring at decision N is —10g, p, or equivalently —log,(1—p,,). The total
information in a series of dynamically estimated decisions is the sum of the information of each

outcome.

71

If n,is the number of most probable outcomes and N, is the number of least probable

n n
outcomes thus far in a series of N binary decisions, then p,, =——— and p, = —— are
n_+n, n, +n

m
the probability estimations for the next outcome. The sums N and N, are called the conzext of

a series of decisions. A sequence of binary decisions can have a number of contexts. For
example, one of the contexts of the stroke code is the stroke location context. For all the pixels
in an image, the decoder asks “Does a stroke start at this pixel?”. The number of yes answers
and no answers are the stroke location context. Actually, there are several stroke location

contexts, which we discuss in the next section.

Absent prior evidence to the contrary, all decision context sums are initialized with one most
probable and one least probable outcome. This results in equal outcome probabilities until at

least one decision is made.

6.3.2 Stroke Start Points

Each pixel in the image is a possible stroke location. The decoder scans the image in raster
order and determines whether or not a pixel is a stroke location. The information associated
with this process is called the stroke /ocation information. Once a decision has been made that a
pixel is a stroke location, different processing occurs depending upon the known boundary

state at the stroke location.

Every stroke location can have a separator along either of its northern or western edges or
both. If a stroke location already has one of its separators known from a previously decoded
stroke, it has only one stroke chain that starts in the direction of the undecided edge. If it
already has both of its separators known, it is not a stroke location and no deciding information

is needed from the encodet.

If a stroke location has neither separator known, it can be either bare or southeast corner connected.
A bare location has no edges impinging on its northwest corner. A southeast corner connected
location has boundary separators along both the southern and eastern frontiers of the pixel to

its northwest.

72

A bare location must be both northernmost and westernmost since it has no other edges with
which to connect. The chain starting along its western edge and heading south is decoded first.
If that chain is not clsed, a second chain is decoded starting along the stroke location’s northern
edge and heading east. A closed chain returns to its start location heading in the opposite

direction from its outset.

Name | Determining information
ze Zero previously decoded edges, bare
se Zero previously decoded edges, southeast corner to northwest
oe One previously decoded edge
te Two previously decoded edges
Table 6.1

Stroke Location Contexts

There are four stroke location contexts corresponding to either one or two previously decoded
edges, and bare and southeast corner connected locations where no previously decoded edges
are known. Table 6.1 summarizes these contexts and gives them names. There is no
information associated with the te context; these pixels are not possible stroke locations. The
skew of the ze context is typically much higher than that of the se or oe contexts, thereby
reducing the information of the three contexts relative to that of a single context containing all
se, oe, and zelocations. On Figure 6.1 strokes one and four have ze start points. Strokes two,

three and five have oe start points.

Since it can connect to the boundary corner to its northwest, a southeast corner connected
location cannot know if it has a chain starting along its western edge, its northern edge or both.
Further chain start disambignation information is supplied by the encoder to differentiate between
the three possibilities. Disambiguation takes two binary decisions. The first decision is both

chains or one. If one, the second decision is north or west.

The se context also holds the statistics of the start disambiguation decisions. Three sums are
maintained, the number of southeast corner connected locations with two stroke chains, the

number with a northern chain, and the number with a western chain.

73

Figure 6.2 Figure 6.3
Boundary and Stroke Start Points Boundary and Stroke Start Points
100 Domain Lena 3200 Domain Lena

Figure 6.2 and Figure 6.3 show stroke locations as darker dots for 100 and 3200 domain Lena
partitions. Note how larger domains may have many stroke locations along their periphery.
Once a large domain is decoded, its periphery gives likely stroke locations. This is the source

of the skew disparity between the ze and se or oe contexts.

6.3.3 Stroke Chain Termination

A stroke chain implicitly terminates if it makes a intersection with the image boundary or

with a previously decoded stroke. A corner intersection may or not may not terminate a stroke
chain. Comer disambiguation information is supplied by the encoder to distinguish the two cases.
The corner disambiguation context, designated cd, holds the statistics of the disambiguation
outcomes. Since stroke chains can only be terminated by intersection with another stroke,
there are no hbanging (unterminated) chains present at any point in the decode process. On
Figure 6.1 stroke five has a contining corner junction with stroke one and a terminating corner

junction with stroke three.

74

6.3.4 Stroke Chains

Stroke chains cannot backtrack and are terminated by intersection with another stroke.
Therefore, stroke chains are three direction chains: left, right straight. This three-way decision
is reduced to two binary decisions via a two level coding tree. The first decision differentiates

between straight and turn. The second between left and right.

The sixteen probability estimation contexts of Table 6.2 are used to reduce the information
content of the stroke chains. Having multiple contexts allows us to increase the average skew
of the binary decisions over that of a single context. These contexts are designed to capture
the statistics of chains that result from the smoothing procedure of Chapter 0. A simple state
machine determines the context used to code each chain event. Several contexts end in ss*
and their purpose is to differentiate straight sections that are known to be /Ang (two or more

strai cvents) rrom those that are not ye own to be long.
traight ts) from those that t yet kn to be long

Is previous event straight, left prior to that

s previous event straight, right prior to that

y/| previous event left, left prior to that

Ir previous event right, right prior to that

Iss” at least two previous events straight, last turn left
rss’ at least two previous events straight, last turn right
1l previous event left, right prior to that

Ir previous event right, left prior to that

rl(r])” | rlrepeated more than once
Ir(I)” | Irrepeated more than once
(1)1 Il with at least one included #/
r(It)’r | rrwith at least one included Ir
(t])’s special case of Is

(It)’s special case of rs

(t])"ss” | special case of Iss

(It)"ss” | special case of rss

Table 6.2
Stroke Chain Contexts

75

The main point is that these contexts are not simply the last few chain directions. For example,
the Iss” context is active if the last two directions traveled were straight and the last turn
previous to the straight section was a left turn. The Ir(Ir)” context is active if the last direction
was a right turn and all directions prior to that right were alternating turns beginning with a left
turn. Taken together these contexts are designed to capture the behavior of the raster drawn

boundary preferred by Chapter 0’s smoothing procedure.

6.4 Experiments

Table 6.3 and Table 6.4 show the results of simulating the stroke code against unsmoothed and
smoothed Lena partitions of between 100 and 3200 domains™. The first column is the number
of domains in the partition, the second column is the total number of separators in the
boundary, and the third is the total number of strokes necessary to code the boundary. The
fourth through seventh columns are the location, corner disambiguation, chain and total
information for the stroke code. The location information column includes chain start
disambiguation information. Since the information content of a sequence of binary decisions is
a very good estimate of the number of bits necessary to code that sequence using an arithmetic

coder, column seven is a good estimate of the total bit count necessary to code the partition.

* Refer to Figure 5.15, Figure 5.16, Figure 6.2, and Figure 6.3 for visual representations of several test data sets.

76

Counts Information
Domains | Separators | Strokes | Location | Corner | Chain | Total
100 7929 96 948 33 9105 10085
200 10269 190 1712 59 12033 | 13804
400 15912 392 3219 99 20234 | 23552
800 19139 765 5638 245 24007 | 29890
1600 25966 1529 9850 419 34342 | 440611
3200 33601 2905 16647 1328 44153 | 62129
Table 6.3

Stroke Data (Unsmoothed Lena)

Counts Information
Domains Separators Strokes Location Corner Chain Total
100 6151 99 949 5 4957 5911
200 7921 199 1656 13 6495 8165
400 12285 397 3073 35 11795 14903
800 15621 772 5367 149 15697 21213
1600 19331 1543 9007 313 20184 29503
3200 25396 2914 15065 1214 27752 44031
Table 6.4

Stroke Data (Smoothed Lena)

The first thing to note is the significant difference between the code’s performance on the
smoothed and unsmoothed examples. This is due primarily to decreased chain direction
entropy for the smoothed boundary. Direction entropy for the 100 domain unsmoothed Lena
is 1.15, but for the corresponding smoothed example is only 0.8. Also of interest, is that corner
disambiguation information is never a significant percentage of the total code length. This is

really the main reason for the overall success of the code.

The last point to glean from Table 6.3 and Table 6.4 is that chain direction entropy increases
and chain location information becomes more significant as the domain density increases.
Even so, the results are good for the smoothed boundary right up to the dense threshold. This

is especially significant since the code is designed to operate most efficiently on sparse

partitions.

77

Since the stroke code handles the chain termination problem with very little overhead, it
appears to be superior to any previously reported chain code for partitioned general images.
We now examine how it compares with raster neighborhood codes. As a lower bound for
raster codes, we can look at the performance of the Q-Coder?? on northwest-black boundary
images. A northwest-black boundary image is formed by turning a pixel black if it is adjacent
to the northern or western frontiers of a domain and white otherwise. This results in a

black/white image similar to those of Figure 6.2 and Figure 6.3".

Counts Information
Domains [NW Pixels |Q-Code [Separators Stroke Code
100 6647 12643 7929 10085
200 8641 16343 10269 13804
400 13086 25407 15912 23552
800 15751 30087 19139 29890
1600 21108 38014 25966 44611
3200 26792 43607 33601 62129
Table 6.5

Stroke Code vs Q-Code
Unsmoothed Lena

This means that we are comparing a one bit/pixel base rate raster code to the stroke code.
Remember, a one bit/pixel base rate raster code can only yield complete boundaty information
for black/white images. A general rule of thumb is that a one bit raster code only knows about
as many separators as there are northwest-black pixels. The greater the difference between the
number of separators and northwest-black pixels, the more information is needed by the one
bit raster code to completely specify the boundaries of the equivalent partitioned general image.
Clearly the Q-Coder used in this fashion produces shorter code streams than any two bit/pixel

base rate raster neighborhood code.

* Just turn the gray pixels black.

78

Counts Information
Domains |[NW Pixels |Q-Code [Separators Stroke Code
100 5148 7999 6151 5911
200 6620 10137 7921 8165
400 10118 16609 12285 14903
800 12942 20746 15621 21213
1600 15998 24349 19331 29503
3200 20473 30132 25396 44031
Table 6.6

Stroke Code vs Q-Code
Smoothed Lena

Table 6.5 and Table 6.6 compare the stroke code and northwest-black Q-Code for the
previously examined unsmoothed and smoothed Lena partitions. The first column is the
number of domains in the partition, the second column is the number of northwest-black
pixels in the Q-coded test image, the third column is the corresponding Q-code length. The
fourth column is the number of separators in the partition. Note how the number of separators
becomes increasingly greater than the number of northwest-black pixels as the number of
domains increases. The last column is the stroke code length. Surprisingly, the stroke code is

supetior to the Q-code all the way up to 800 domains.

79

—&— Q-Code (Unsmoothed)
—il— Stroke Code (Unsmoothed)
—&— Q-Code (Smoothed)

—>— Stroke Code (Smoothed)

100 200 400 800 1600 3200

Domains

Figure 6.4
Stroke Code vs Q-Code
Smoothed and Unsmoothed Lena

Figure 6.4 charts the data of Table 6.5 and Table 6.6. Again note the crossover point at around
800 domains for both the smoothed and unsmoothed groups of partitions. It is evident that
the stroke code is superior to any two bit raster neighborhood code for sparse partitions. What
is not yet known is exactly where the cross-over point with two bit raster codes lies or even if it

exists.

6.5 Summary

We classified image partitions as sparse, dense or between sparse and dense. We developed the
stroke code for representing the boundaries of a partitioned image. It is the first code to
handle the three direction chain termination problem. We apply the raster drawn boundary
criteria of Chapter 5 to develop improved chain direction probability estimation contexts. We

showed the stroke code to be supetior to raster neighbor codes on sparse image partitions.

80

7. Geometry Implicit Coding of Two Dimensional Polynomials

We continue with our task of minimally representing a piecewise-smooth image model by
developing methods to code each domain’s polynomial intensity function. We assume that the
domain boundaries of the image model are coded separately and are available to the polynomial
coder and decoder. We develop the method of sentinel points, whereby certain points in a
domain, known only from the domain’s geometry, are used so solve a system of simultaneous
equations that yield the domain’s intensity function. With this technique, the locations of the
sentinel points are known implicitly and only their values must be decoded to recover the

model.

A global parameter associated with each image model is the maximum order of its domains’
polynomial intensity functions. The polynomial order of a domain is reduced when it does not
have sufficient support for all the terms of the model’s maximum order polynomial. The
stability parameter of the modified Cholesky method of Chapter 3 is the arbiter of what
polynomial terms are supported by a domain. This stability parameter is another global

parameter of each model.

The intensity functions of a model’s domains can be represented with varying accuracy. This is
accomplished via variable quantization of the sentinel point values. The amount of
quantization applied to sentinel point values is determined implicitly by the size of the
associated domain. Three global parameters determine the maximum and minimum
quantization applied to sentinel point values and the distribution of the sentinel point values

into the various quantizaters.

7.1 Background

Typically!-*, segmentation-based image coding schemes allocate eight bits per polynomial
coefficient when estimating bit rates. Kunt?* suggests recovery of polynomial coefficients from
“regularly spaced” eight bit data values. In Section 7.3, we develop an algorithm for

determining data value locations for first through third order approximating polynomials.

81

These locations are constrained to lie within their associated domain and as such, are not

regularly spaced.

7.2 Sentinel Points and Polynomial Reconstruction

Given a connected discrete two dimensional domain, A, we would like to find the (X,Y)
coordinates of N sentinel points that can be used to optimally recover any N term polynomial,
z=f(X,y), over the domain. All points of A have positive coordinates and the range of Z,

R, , is limited to lie between two positive integers z, and Z,,.

If given N tuples (X;,Y;,Z;) we can construct an N term polynomial through them by solving

a system of simultaneous equations. For example, given the two dimensional linear

polynomial:
Z=iXx+ jy+k,

and three points on its surface, (X;,Y;,2;), (X,,¥,,2,), and (X;3,Y;,2Z;), we can solve the

system:

k

X3 y3 1 23

to yield the coefficients i , j,and K.

The accuracy with which we can recover the polynomial coefficients using such a system is

limited by the accuracy to which the z; are known. If the Z; are know to a fixed precision, our
problem is to find the sentinel points, (X;,Y;), that no matter what the polynomial yield its

best approximation given the z;.

One may be tempted to specify a regular pattern of sentinel points by inscribing A inside of a

figure such as a rectangle. Doing this, however, does not constrain the values of the sentinel

82

points to R,. For higher order polynomials, points even slightly outside of A can take on
values significantly beyond R,. In other words, A’s polynomial function is guaranteed to be
within its range only over A and deviations outside of A are not bounded. Another way of

saying this is that the polynomial is interpolating over the domain and extrapolating outside of

the domain.

Since our goal is to code a polynomial as accurately and using as few bits as possible, we can
take advantage of the known R, to maximize the precision to which the z; are known if we
constrain the sentinel points to lie within their corresponding domain. This constraint leads to

the sentinel point selection algorithm of the next section.

7.3 Choosing Sentinel Points

We now present algorithms for choosing optimal sentinel point locations for four different

polynomials:
[= k
o z=ix+jy+Kk

z=X>+gxy+hy> +ix+ jy+k

z=ax® +bx’y +cxy? +dy® + fx* + gxy + hy® +ix+ jy + k.

These points are optimal in the sense that their locations minimize the derivative of the

recovered polynomial coefficients with respect to changes in their data values

7.3.1 Zero Order System
For the zero order system, the solution is trivially any point in A since all points have the same
value. We pick the point whose Y coordinate is less than or equal to any other pointin A and

whose X coordinate is less than any other point with the same Yy coordinate. Since our

83

coordinate system has X increasing to the right and Yy increasing downward, this point is

designated the northwestern most pointin A .

7.3.2 First Order System

The two-dimensional linear polynomial is:
zZ=ix+ jy+Kk.

We desire to find three points, (X;,Y;), (X,,Y,), and (X;3,Y;), that when used to solve the

system:

X1 Y1 1y 121
k

X3 y3 1 23

yield the best values of 1, J,and K given that there may be error in the values, Z,, Z,,and Z,.
The determinant of the sentinel matrix is:

D=(X1'Y 9~ X1Y 3~ XY 1+ X2V 3+ XgY 1~ X3V 2)

and the solution for the polynomial coefficients is:

i\ Y2=Y3 Y1tY3 Y1-Y2 Z1
j =

*X2+X3 Xl*XS *X1+X2 . 22

1
/ D
K Xo¥Y3=X3¥o Xy¥Y3tX3¥Yq1 Xy¥Yo-Xo¥1]|23

If we differentiate 1, j , and K with respect to z;, Z,, and z, we can find the sensitivity of the
coefficients with respect to changes in sentinel point values. If we jointly minimize the
coefficient sensitivities, we can obtain the sentinel points that give the best possible accuracy

for 1,], and K given an error bound on their values. Differentiating with respect to Z;

yields:

84

. Yiva .
D
i
L J = X27X3
dz
1y D
X3Yo-Y3X)
L D .

Differentiation with respect to all three sentinel point values yields nine sensitivities, three for
each coefficient. Of course it is not possible to bring all sensitivities to zero. We could attempt
a mean squares solution, but we really desire an approximately accurate solution that can be

quickly calculated.

One obsetvation is that all sensitivities are divided by D. If |D| is large, all sensitivities are
small. It is not immediately obvious how to make D large, but if we add the further

constraint that Y, = Y,, then D reduces to:
- \
D reduced‘(’xl+ X2/'<’y 1ty 3>‘

What we want is two points with the same Y coordinate that maximally differ in X and a third
point that maximally differs in Yy from the other two. Or if we add the constraint X; = X, , we
want two points with the same X coordinate that maximally differ in y and a third point that

maximally differs in X from the other two. The coordinate equivalency constraint allows us to

separate the problem into one in X and one in Y. An optimal solution to even the separated

problem requires O(M-N) time. M is A’s extentin X and N is its extentin Y.

To reduce the algorithmic complexity, we can adopt a greedy approach and maximize each

term of the reduced D in turn:

1. First choose A’s maximal length rectilinear chord and make its endpoints (X;,Y;)
and (X,,Y,). Designate this chord the domain’s primary chord.

2. Find the point on A’s petiphery that is maximally distant in the opposing
coordinate from the primary chord and make that point (X,,Y;). Designate the

85

line drawn perpendiculatly from the primary chord and through (X;,Y,;) the

secondary chord.
3. Break ties by choosing chords at minimal perpendicular distance from the centroid
of A.

Since the points on the petiphery of A are examined at most twice, the greedy algorithm for

choosing linear sentinel pointsis O(M+n).

7.3.3 Second Order System

Solving for the sentinel points for the second order polynomial:
z=X2+gxy+hy’ +ix+ jy+k

is intractable in its intact form. To make things tenable, we again separate the problem. Using
a greedy approach, we solve first for sentinel points that yield X coefficients, next for points

that yield Yy coefficients and then a final point for the mixed coefficient.

Using the method of the previous section, we develop a system of equations in three
unknowns to find the best three points for a single dimensional domain. Separating out the X

problem yields the following sentinel matrix:

2

Xg Xg 1
2

Xl Xl 1

2
X2 X21

whose determinant is:

=<X07 X1>'<7X0+X2>'<7X1+X2>.

86

7.3.3.1 Primary Chord

If the points are arbitrarily ordered, X, < X; < X,, we can maximize the middle factor by
choosing the endpoints of our one dimensional domain, X, for X, and X,. Differentiating
D with respect to X; :

d

d—XlD=<xof x2>-<—x1+ x2> - (xof x1>-<—x0+ x2>

and finding a local minimum yields:

X24r XO
2

X1=

which is simply the midpoint of X.

Now that we know how to maximize |D| for a given X, we can find the maximal D
rectilinear chord of our two dimensional domain. Noting the equivalency of interchanging X

and Y, this primary chord can be either or horizontal or vertical.. We drop the X notation and

designate the three sentinel points of the primary chord p,, p,,and p;.

7.3.3.2 Secondary Chord
We next find a secondary chord in the opposing dimension that has maximal |D| relative to the
primary chord. By relative, we mean that only two of the D points, S;, S,, and S; of a

secondary chord are independent of the primary chord. The dependent D point of a secondary

chord is its intersection with the primary chord.

If s, is a secondary chord’s dependent D point, the relative D of a secondary chord, D, is
found by fixing one its D points, say S, at S,. To maximize D our task is reduced to

finding optimal locations on the chord for S,, and S,. Clearly, the point on a secondary chord

turthest from the intersection point is one of its maximal ‘DS points.

87

To find the final independent maximal ‘DS point of a secondary chord, one option would be

an exhaustive search among the points of the chord. To keep the secondary chord algorithm

O(1), however, we use the X algorithm to find a secondary chord’s three best independent
points. We then substitute S, for each of these points and keep the result with maximal D.

This takes only three interchanges and comparisons.

Next we find the chord combination that maximizes the product ‘Dp -D,|. Since we have already

fixed the primary chord, this is search consists of finding the secondary chord with maximal

.

. The two independent maximal ‘DS points of the secondary chord together with the

three points of the primary chord give us five of the desired six sentinel points for the second

order polynomial. These points define the unmixed polynomial terms.

7.3.3.3 Mixed Term Sentinel Points
To find the mixed term sentinel points, we recognize that the primary and secondary chords

define a coordinate system with its origin at the chord intersection. We then maximize D, of

m

the mixed term sentinel matrix in the chord coordinate system. The mixed term sentinel matrix of

A contains only a single component: [Xl yl] . The point in A that maximizes this product in

the new coordinate system is the mixed term sentinel point. That point can be found by

procedurally searching through all points of the petriphery of A .

7.3.3.4 Computational Complexity

e Finding the mixed term sentinel point is proportional to the length of perimeter of

A or O(m+n).

¢ Finding the primary chord is O(mM+n): we examine three points on each
rectilinear chord of a domain.

¢ Finding the secondary chord is O(n) or O(m).

e The overall computational complexity is O(m+n).

Up to this point we have assumed that all one dimensional chords, X, of A are connected;

this may not be the case. Accordingly, the midpoint of X may not lie in X. If so, we modify

88

the X algorithm to substitute the point lying in X that is closest to its midpoint for X .
Doing this increases the sentinel point computational bound to O(m-n). Fortunately,

domains that press against this bound are rare in our image coding application.

7.3.3.5 Summary

To summarize, the second order sentinel point algorithm is:

1. Use the X algorithm to find the rectilinear chord of A with maximal |D| and
obtain three sentinel points.

2. Using the secondary chord algorithm, find X that maximizes ‘D and obtain two

S
additional sentinel points.

and use it as the final

3. Find the point on the petimeter of A that maximizes ‘Dm‘

sentinel point.

7.3.4 Third Order System

To solve the sentinel point problem for the third order polynomial
z=ax’+bx’y +cxy? +dy® + fx* + gxy + hy® +ix + jy + k
we again separate the problem.

7.3.4.1 Third Order X Interior Points

The separated third order sentinel matrix in X is:

s) _

XO XO XO 1
3 2

X1 X" Xq 1

3 2
X2 X2 X2 1

3 2
7X3 X3 X3 17.

The maximal D interior points for the third order X problem are:

89

2
X1=
X0+ X3 % /
A X3*Xo>
2 10 \

7.3.4.2 Mixed Coefficients

The mixed coefficient sentinel system now contains more than one element:

2 2
Xty Xy XaYr |, 171

2 2
XpYo XY Xg¥o |- b= Z2
C

2 2
X3Y3 X3 Y3 X3V3 ‘3]

D for the mixed term matrix is:
D=XoX1'Y 2X3Y 3Y 1 (y 2X1-X3Y 2~ Y3X 1t XgyY1- Y1 Xot Xy 3>.

Working in the chord coordinate system we greedily maximize ‘Dm‘ as follows. First

temporarily set (X,,Y,), and (X3,Y;) to zero and find the sentinel point that maximizes the

remainder of ‘Dm‘ :
X1Y1
Next reinstate (X,,Y,) and find the point that maximizes
XY 2(X1Y 2= X2y
2Y2X1Y2- X2¥1)
Finally, find the point that maximizes the overall ‘Dm‘ :

X3Y3 (*y 2X1TXgY 2T YgX -~ XgY 1Y X~ XY 3>,

90

Since none of the mixed terms are factors of one another, we can constrain the mixed term
search to the petiphery of A, and the algorithmic complexity bounds developed for the second

otder problem still apply. The third order sentinel algorithm is O(m+ n)

7.3.5 Examples
We end this section with some sentinel point examples. Figure 7.1 shows the zero order
sentinel points for synthetic image Synl5. They are simply northwestern most. Figure 7.2

shows the first order sentinel points for the same image. Note that all points are peripheral.

Figure 7.1 Figure 7.2
Zero Order Sentinel Points for Syn15 First Order Sentinel Points for Syn15

Figure 7.3 shows the second order sentinel points for Synl5. Interior points are now

developing. Figure 7.4 shows the third order sentinel points. Three points per domain are

now interiot.

91

Figure 7.3 Figure 7.4
Second Otder Sentinel Points for Syn15 Third Order Sentinel Points for Syn15

To help understand how the sentinel points fall, let’s find them for the ellipse in Figure 7.4.
First, since this is a third order example, there are four primary chord sentinel points. For this
domain the primary chord is horizontal and its four sentinel points are found just below the
dark horizontal line. The three secondary chord points align vertically to the left of the

vertically drawn line. The three mixed coefficient points are labeled M1, Ma, and Ms.

As a final example, Figure 7.5 and Figure 7.6 show third order sentinel points for 100 and 800

domain partitions of Lena.

92

Figure 7.5 Figute 7.6
Third Order Sentinel Points for a 100 Domain Lena Third Otder Sentinel Points for an 800 Domain Lena

7.4 Sentinel Points of Under-Constrained Domains

We saw in Chapter 3 that a domain may not necessarily support all the terms of a given
polynomial order. Each image model has an associated maximum order of its domains’
polynomial intensity functions. The polynomial order of a domain is reduced when it does not
have sufficient support for all the terms of the model’s maximum order polynomial. The
stability parameter of the modified Cholesky method of Chapter 3 is the arbiter of what

polynomial terms are supported by a domain

When using sentinel points in a polynomial coding procedure, the coder and decoder both
know the image model’s global Cholesky stability factor once it has been transmitted. Using
the same Cholesky method with the same stability factor as the encoder, the decoder can know
which sentinel points to expect without any additional information from the encoder beyond

the domain’s geometry.

The terms of support are a function of domain geometry only, and can be determined before
sentinel point discovery commences. If we assign one sentinal point to each polynomial term,
we need only develop sentinel points for the supported terms. For example, if the maximum
global model order is three and the X® polynomial term is not supported by a particular

domain and is the only term in X not supported, we reduce the X term sentinel point search

93

to the second order X problem. If both x? and x*® are not supported by a domain, the X

term sentinel point search reduces to the first order X problem.

Unsupported mixed term sentinel points can be handled easily as well. For second order
models, we simply eliminate the single mixed term sentinel point if it is not supported. For
third order models, we simply bypass any unsupported terms in the greedy algorithm for

locating mixed term sentinel points.

7.5 Quantization

Since we want to apply sentinel point polynomial reconstruction to lossy image coding, we now
look at how the reconstruction degrades when the sentinel point values are quantized.
Quantization of a set of data values constrains those values to take on a fixed number of

values. Fach value is a function of the quantizer step size, Q The quantization function maps

step *

each data value to its corresponding quantized value. The quantization function that we use is:

. l’OUﬂd (P) i Qstep
Q Qstep step 2

where all operations except round () are integer operations.

After expending so much effort finding sentinel points, we would hope that quantization of the
sentinel points of A would not increase the error of our approximating polynomial above
some reasonable bound. We use the following definitions to develop such a bound. Define

the MSE of our full precision approximation as E.. Define the additional error introduced by

directly quantizing the data values predicted by the full precision approximation as E, . Define

the MSE of the polynomial recovered with quantized sentinel points as E .

If we assume independent noise sources and uniform distribution of data values into quantizer
buckets, the MSE of the polynomial extracted from the quantized sentinel points should be

bounded as follows:

94

Eos <= Ef +Eqp-

The quantity

is a measure of how well this bound is met. Good sentinel point selection results in G values
near one. Essentially, G is the ratio of the error in the data values predicted by the quantized
sentinel points to the error in the data values introduced by direct quantization of the values

predicted by the full precision approximation.

Quantization Error
100 Domain Lena

Qstep E- oD E: +Eqgp Eqs PSNR

0 126.8 0 126.8 126.8 27.10

1 126.8 25 127.1 127.3 27.08

2 126.8 .5 127.3 127.6 27.07

4 126.8 1.5 128.3 128.6 27.04

8 126.8 55 132.3 134.2 26.85
16 126.8 21.5 148.3 149.5 26.39
32 126.8 85.5 212.3 224.4 24.62
64 126.8 341.5 468.3 448.6 21.61.
128 126.8 1365.5 1492.3 1228.3 17.23

Table 7.1

Table 7.1 shows the error introduced by quantizing the sentinel points of a 100 domain
partition of Lena. The first column is the quantizer step size used to generate columns two and
four. The second column is the MSE of the unquantized piecewise-smooth third order model
of the image. The third column is the additional noise expected from direct quantization of the
intensity values produced by the full precision model. The fourth column is the sum of
columns two and three. The MSE of the model coded via quantized sentinel points is in the

fifth column. Although E is slightly greater than Ep + Ep, the difference is quite small.

95

The worst value of G is 1.14, corresponding to a Q

step

than one for quantizer step sizes greater than 32.

of 32. Interestingly, G becomes less

Quo | Er | Eoo E-+Ep | Egs | PSNR

0 253 0 25.3 253 34.10

1 25.3 .25 25.6 26.4 33.92

2 253 5 25.8 26.6 33.89

4 253 1.5 26.8 27.6 33.73

8 25.3 5.5 30.8 33.1 32.93
16 25.3 21.5 406.8 524 30.94
32 253 85.5 110.8 128.1 27.06
64 253 341.5 366.8 378.6 22.39
128 25.3 1365.5 1390.8 1247.8 17.17

Table 7.2

Quantization Error
800 Domain Lena

Table 7.2 shows the same data for an 800 domain Lena partiion. Again the worst value of G,

1.20, occurs for a Qg,, of 32. This phenomenon is cutrently inexplicable.

step

Figure 7.7 charts the square root of columns Eq;, and Ey of Table 7.1 and Table 7.2. The

RMS model error increases essentially as Eog = ,/E¢ + Eqp which is as expected for two

independent sources of error. Particularly of interest is that models with higher initial error can

be quantized quite heavily before additional distortion is introduced.

96

R 40
M 35

o5 —&— Quantization
20 —l— 100 Domains
15 —— 800 Domains
10

®© »nw — 0 Z

0 1 2 3 4 5 6 7
log(Quantizer Step Size)

Figure 7.7
Uniform Quantization Noise
and Third Order Lena Examples

7.5.1 Variable Quantization

Studies of human perception* have shown that the eye is less sensitive to intensity variations of
higher spatial frequency. We can take advantage of this knowledge when coding an image, and
quantize smaller domains more heavily than larger domains. Smaller domains can also be

quantized more heavily due to the nature of the extraction algorithms used in Chapters 3 and 4.

Since smaller domains have a larger periphery-to-area ratio, they are preferentially merged to
minimize the boundary length term of the model cost function. It is clear that the smaller the
domain, the more its intensity must differ from its neighbors for it to persist through the
domain growing process. Since small domains differ significantly in intensity from their

neighbors, they can be quantized more heavily before distortion becomes noticeable.

We introduce a simple mechanism for implicit quantization based upon domain size. For each

image we specify three parameters. Q, is the quantizer step size to use for the largest domains
in the image. Q) is the quantizer step size to use for the smallest domains in the image. The

third parameter is a knee value, K, that spreads the sentinel points into the different quantizer

step sizes in use.

97

Domains whose size is greater than K are quantized with a step size of Q;. Domains whose

size is in the range 5 <2 <k are quantized with the next larger quantizer step size. At each

factor of two reduction in size quantization becomes increasingly coarse until quantization
reaches Q, in which case all smaller domains are quantized at that step size. The only
overhead associated with this implicit quantization scheme is the information necessary to

transmit the three parameters, Q;, Q, , and K to the decoder.

The implicit size mle combined with the size and fidelity dependencies allow for significant
quantization over a wide range of compression ratios. When compression is high, the overall
error is already significant before quantization and therefore quantization can be quite heavy
before it introduces additional distortion. When compression is low, most of the domains are

quite small and can be quantized more heavily.

Table 7.3 and Table 7.4 show the distribution of quantization step sizes for sentinel points of
the previously discussed 100 and 800 domain Lena partitions. There are two quantizer step
sizes in use in the 100 domain partition and five in the 800 domain partition. The knee

parameter, K, is 200 and 50 respectively.

Quantizer Step Size Coetficients Quantizer Step Size Coeftficients
16 549 2 1440
32 313 4 1062
Table 7.3 8 1665
Quantization Distribution
100 Domain Lena 16 1467
32 1077
Table 7.4
Quantization Distribution
800 Domain Lena

Table 7.5 shows the corresponding error when quantizing the sentinel points as above. The
increase in PSNR over the that of the unquantized model is less than one dB for both

partitions.

98

Domains | MSE RMS Error PSNR

100 155.0 12.5 26.23
800 30.10 5.49 33.35
Table 7.5

Lena with Variable Quantization

7.6 Optimizing Quantized Sentinel Point Values

The models extracted by the procedures of Chapters 3 and 4 do not account for polynomial
coefficient quantization. QQuantization introduces independent distortion that we can attempt
to minimize by perturbing the values of sentinel points. Table 7.6 shows the results of
performing a simple greedy optimization procedure on the sentinel points of two Lena and two

Cameraman partitions. The PSNR is improved by an average of over .5 dB for each partition.

The sentinel value optimization algorithm works by examining each sentinel point in turn and
perturbing it into the next higher and next lower quantizer buckets. Perturbations that lower

the model’s MSE are kept and those that do not are discarded.

The moment methods of Chapter 2 are used in this procedure. The polynomial coefficients
are recalculated after each sentinel point perturbation using the Cholesky method of Chapter 2
on the moment set that contains only the sentinel points. These coefficients together with the
natural and forcing moments of the full domain, are used in the error calculation. Using this

technique, moment perturbations can be accomplished in O(1) time.

Image domains | MSE PSNR | Optimized MSE Optimized PSNR

Lena 100 | 1824 25.52 155.0 26.23

Lena 800 | 34.15 32.80 30.10 33.35

Cameraman 100 | 252.5 24.11 230.5 24.50

Cameraman 800 88.9 28.64 81.3 29.03
Table 7.6

Optimizing Sentinel Point Values

7.7 Coding
We predictively code the quantized sentinel point values. Both the coded values and the

prediction are specified in the guantizated data space. In other words quantizer bucket differences

99

are transmitted and applied to a predicted quantizer bucket. Sentinel point difference values

are transmitted for each domain in raster scan order

7.7.1 Quantization Model
In Section 7.4 we presented the quantization function used to apply quantization to sentinel

point values:

round (P Qe
Qstep 2

When coding these quantized values, we transmit only the guantizer bucket into which the data
point falls. The quantizer bucket of a sentinel point, P, is developed using the forward

quantization function:

_ round(P)
° Qstep ‘

The quantized sentinel point value is recovered from a sentinel point bucket using the znzverse

quantization function:

Qstep

PQ = Qb ‘Qstep + 2

7.7.2 Prediction
The information necessary to specify the sentinel points of a domain is reduced via prediction. A

predicted value for each sentinel point is developed and the difference, Q,, between the

prediction and the actual value is coded. The predictor used is the average value of the
previously decoded points of the same domain. Using this simple zz#ra predictor, the first point

of each domain must be coded without prediction.

As each Qy is received it is added to the quantizer bucket, Q,, of the current prediction to

calculate the quantizer bucket of the associated sentinel point, Q,. Q, is used to calculate P,

100

via the inverse quantization function. Each inverse quantized sentinel point is added to the

sentinel point list for its domain and is also used to update the predictor.

The predictor value is the running total of the P, values of the sentinel points received thus
far for each domain. Q, is calculated from this running sum as needed by dividing by the

number of points in the sum and applying the forward quantization function.

Since sentinel point values can be variably quantized depending upon the size of their

associated domain, there are several Q values in use for each image. There is one

step

probability estimation context for each Qg,, in use. The symbol probabilities of each Q

step step
context are used to reduce the entropy of the differences coded in that context. Unpredictable

information falls into a base context.

The coding model for differentially coded sentinel point values is not yet complete.. A two-
pass, or N10g, N, entropy estimate is used to obtain the data of the following section and that
of Sections 2.3 and 8.3. The two-pass entropy estimate is not attainable in practice and the
sentinel point data should be viewed in that light. There are two practical problems with the
two-pass entropy measure. First, symbol probability estimates are determined after all symbols
have been counted. Obviously, this cannot be done by a real decoder. Second, possible
symbols that do not occur anywhere in a simulated code stream do not contribute to the code
string length. In any practical coder, a minimum probability must be assigned to every possible
symbol regardless of occurrence in a particular simulated code stream. Any minimum
probability assigned to symbols that do not appear increases the entropy of symbols that do

appear in the code stream.

7.7.3 Experiments
Table 7.7 and Table 7.8 show sentinel point entropy for the 100 and 800 domain Lena

examples.

101

Context | Sentinel Points Entropy Context | Sentinel Points Entropy
base 962 3.12 base 7511 4.01
16 549 3.16 2 1440 5.02
32 313 2.90 4 1062 4.63
Sent Table 7.7 8 1665 3.90
ey P Foeons i6 fagT| 52
32 1077 2.63

Table 7.8

Sentinel Point Entropy
800 Domain Lena

Table 7.9 shows the total sentinel point information for these two examples.

Domains Base Differential Total
100 361 2641 3002
800 | 3927 26219 30146
Table 7.9

Sentinel Point Information for Lena Examples

The sentinel point entropy for both of these examples is below 4 bits/point. For the 100

domain example, quantization can be heavy for all image domains since the piecewise-smooth

model of which the sentinel points are a part has significant error before quantization is

applied. For the 800 domain example, many domains are quite small and can be quantized

heavily without increasing visually perceived distortion. Additionally, the large domains are

smoother; the sentinel points of large domains are better predicted by the average predictor.

The independent probability estimation contexts for each Q

this size/smoothness disparity.

102

step

take maximum advantage of

8. Coding Experiments

The preceding chapters have developed machinery for building and representing piecewise
smooth image models. Up to this point we have looked at the behavior of each component of
this machinery in isolation. We now apply the entire machine to piecewise smooth coding of
several Internet images. We give simulated code data for four images: Miss America, Lena,
Cameraman, and Baboon that are representative of a wide variety of image types. We then
compare the results with the JPEG standard. Finally, we present some sample piecewise-

smooth partitions.

8.1 Generating Piecewise-Smooth Image Models

Before getting to the data, let’s recapitulate the components of the piecewise-smooth image
model. An extraction procedure partitions an image into domains, each of which is
represented with a polynomial intensity function. The order of the polynomial functions may
be zero, one, two, or three, corresponding to one, three, six, or ten coefficients respectively.
The desired model order is a parameter of the extraction procedure and is uniform for each
image. Of course, domains that contain fewer data points than coefficients have reduced
model order. Use of the Cholesky method of Chapter 3 to establish domain order has not
been implemented for these simulations. This means that for some smaller domains more

sentinel points are transmitted than are needed to recover the domain’s intensity function.
The cost function we use for domain extraction is

AC =-AMSE + - Al .

The moment methods of Chapter 3 make AMSE calculations tractable. We use the same cost
function for both greedy domain growing and raster-break smoothing. Actually, the cost
functions are slightly different since Al is the change in boundary separators in the cost

function for domain growing and is as defined in Table 5.3 for boundary smoothing.

103

There is as yet no automated mechanism for choosing model extraction and quantization
¥ g q
parameters for minimal distortion at a given bit rate. The following parameters are adjusted to

give a visually pleasing result at several binary multiples of 100 domains for each test image:

e The global maximum model order.

e The number of domains in the model.

e The amount of noise suppression to apply during extraction.

e The amount of smoothing to apply to the extracted domain boundaries.
e The quantization applied to polynomial coefficients.

Some general proportionality statements can be made about the parameters chosen. As the bit

rate decreases:

e Higher model orders are used.

e The extracted model is comprised of fewer domains.
e More noise suppression is used in model extraction.
e More smoothing is applied to domain boundaries.

e Polynomial coefficients are quantized more heavily.

Table 8.1 through Table 8.4 show the parameters used for domain extraction in the coding
experiments of Section 8.3. The first column of each table is the overall model order for the
image. The second column is the number of domains in each model. The third column is the
noise suppression factor used in the greedy domain-growing algorithm. The fourth column is
amount of raster-break smoothing applied. In the fifth and sixth columns are the minimum
and maximum quantizer step sizes used on the model’s sentinel points. The size parameter

used to distribute domains into the various quantizers is shown in the last column. The |D|a\,g

notation in the knee column indicates that the average domain size of the image model was

used for K.

104

Oy |P| o, O Q Q, k
3 100 128 1024 16 32 200
3 200 64 768 8 32 100
3 400 8 128 4 32 50
3 800 8 64 2 32 50
2 1600 8 64 4 16 20
1 3200 8 64 4 16 20
Table 8.1

Domain Extraction Parameters for Lena

O, |P| y 2 Q Q, k
3100 e4| 1024 4| 64| [Df,
2| 200 64| 256 4| 32| o,
2| 40| 4| 256| 4 32[|ol,
2| 00| 64| 256| 4| 32| |ol,
U] 1e00| 4| 128 4| 32| |ol,
0| 3200 8| o4 2] 32| |ol,

Table 8.2
Domain Extraction Parameters for Cameraman

The proportionalities just described are evident in the parameter value data. The exact values
of these parameters are not critical and it is seldom necessary to use anything other than integer
multiples of base values to achieve visually pleasing results. The default knee parameter used
by the sentinel point quantizer is just the model’s average domain size. Since domain sizes are
not normally uniformly distributed in an image model, a manually tuned (smaller) quantizer

knee can often give superior results.

105

Oy |P| o, o Q Q, k
3 100 8 128 2 16 200
3 200 8 128 2 16 100
3 400 8 64 2 16 50
3 800 8 64 2 16 50
Table 8.3

Domain Extraction Parameters for Miss Ametrica

Note how the level of quantization decreases as the model fidelity increases. Quantization is
heaviest for baboon, where image activity is high and quantization can be coarser before
distortion is noticeable. Miss America is quantized lightly at all bit rates shown. This is due to
the low-contrast, slowly varying features in the image. Fortunately, since there are few abrupt
intensity transistions in this image, prediction works well and low bit rates are attained with

relatively little quantization.

O M | P| a, s QI Qh k
3 100 | 1024 | 1024 16 64| 200
3 200 512 512 8 32 100
3 400 256 256 8 32 50
2 800 128 128 8 32 50
21 1600 64 64 4 32 20
1 3200 32 64 2 32 20

Table 8.4
Domain Extraction Parameters for Baboon

Experience working with piecewise-smooth image models indicates that an image’s average local
variance can be used to automatically establish near optimal values for all parameters except
overall model order and domain count. The domain count has a fairly linear relationship to
model fidelity. An automatic parameter selection mechanism based upon a user selected

overall model order and quality factor (a.k.a. JPEG) certainly seems achievable.

8.1.1 Coder Performance
If N is the number of pixels in the image being coded, B is the total length of the partition
extracted from the image and M is the number of pixels moved during boundary smoothing,

then the complexity bounds for the three main coder components are:

106

e Greedy domain growing: O(N log® N)
e Raster-break smoother: O(B + M)
e Sentinel point location: O(B)

Since B and M are less than N, the overall complexity is dominated by domain growing.
For the 256x256 and 352x288 images in this chapter, domain extraction takes an average of 62
seconds on a 90 MHz Pentium® based personal computer. Smoothing is accomplished in less
than 10 seconds. Sentinel points are located in less than 1 second. The extraction times for

each image do not differ by more than 20%.

8.2 Coding the Image Model
Figure 8.1 is a block diagram of the simulated piecewise-smooth decoder. Domain boundaries
of the extracted model are coded using the stroke code of Chapter 6, and polynomial

coefficients are coded using the sentinel point code of Chapter 7.

107

Decode header information:

e Global Maximum polynomial order”
e Global Cholesky stability factor”

e Minimum quantizer”

e Maximum quantizer”

e Quantizer knee”

For each image pixel:

e Decode stroke location information”

When a stroke is found

For each boundary stroke:

No . - Lo *
more e Decode chain start information if necessary
pixels e Decode chain direction information if necessary”

e Decode termination disambiguation information if necessary

Aggregate domains

For each domain

Factor the natural moment matrix and determine supported sentinel points
Calculate sentinel point locations

Decode the base domain value”

Decode differentially coded sentinel values”

Solve the sentinel point system for the domain’s approximating polynomial

Use the domain’s approximating polynomial to calculate its pixel intensity values

“Indicates that information is needed from the encoder

Figure 8.1
Decoder Functional Diagram

The piecewise-smooth code has very little overhead. Other than stroke and sentinel point
information, only five integer values must be transmitted. These global parameters are the
maximum polynomial order of the model, the Cholesky stability parameter to use when
factoring natural moment matrices, and three variable quantization parameters. The
quantization parameters are the minimum and maximum quantizers and the quantizer knee

used for decoding sentinel points. After decoding this header information the decoder

108

commences searching the image in raster order for stroke locations. When one is found it is

decoded.

Once all strokes have been decoded, the image pixels are aggregated into domains. The
aggregation proceeds by scanning the image in raster order and recursively joining pixels that
do not have a boundary separator between them. The order in which domains are encountered

in a raster scan determines the order of transmittal of sentinel point values.

Once the domains are established, decoding proceeds one domain at a time. First, a domain’s
supported sentinel points are found by factoring its natural moment matrix. Second, sentinel
point locations are established using the sentinel point location algorithm of Chapter 7. Next,
sentinel point values are decoded. After all sentinel points of a domain are decoded, the
sentinel system is solved for the domain’s polynomial intensity function. Once the polynomial

function is available, the domain’s pixel intensity values are calculated.

8.2.1 Decoder Performance

The piecewise-smooth image model is carefully constructed to allow O(N) decode. The
performance bottleneck for the simulated decoder used in these experiments is evaluation of
the approximating polynomial for each pixel of the reconstructed image. This operation takes
less than 2 seconds on a 90 MHz Pentium® based personal computer for third order models
and less than 1 second for simpler models. In an actual decoder, the entropy coder may

become the limiting performance factor.

8.3 Data

Table 8.5 is piecewise smooth code data for the Miss America (352x288 pixels) image. Since it
has fairly low contrast and few abrupt intensity discontinuities, this image is particularly easy to
code for most techniques and the piecewise smooth method does well also. Even at .09
bits/pixel the results are visually pleasing. Note how the boundary information is dominant at
the lowest bit rates but becomes less so as the bit rate increases. When the coefficient
information becomes dominant, the model order can be reduced to maintain a balance. Model

order reduction occurs between the third and fourth lines of the table in this example.

109

Domains | Order | Boundary Coefficient Total Bit Rate | PSNR
Information | Information | Information
100 3 5317 4037 9354 0.092| 37.11
200 3 6710 7693 14402 0.142| 38.51
400 3 10397 13964 24361 0.240] 39.75
800 2 15077 17029 32106 0.317| 40.36
1600 2 23758 29955 53713 0.530[4140
Table 8.5

Piecewise Smooth Code Data

Miss America

Code data for a 256x256 pixel Lena is shown in Table 8.6. The 100 domain partition is
obviously distinguishable from the original but is visually pleasing nonetheless. The fidelity is
unprecedented for a rate of 0.136 bits/pixel on this image. This image contains a large number

of moderate contrast features and is quite difficult to code. JPEG at this rate is really nothing

but artifacts.

Domains | Order Boundary Coefficient Total Bit Rate | PSNR
Information | Information | Information
100 3 5911 3001 8912 0.136 26.23
200 3 8165 7158 15323 0.234 28.26
400 3 14903 15438 30340 0.463 31.12
800 3 21181 30145 51326 0.783 33.30
1600 2 29524 35258 64781 0.988 35.22
3200 1 44031 40709 84741 1.293 35.66
Table 8.6
Piecewise Smooth Code Data
Lena

Table 8.7 contains data for Cameraman. This image has a large amount of high contrast
periphery which the piecewise smooth method represents well, but with which JPEG has
problems. Again, at 100 domains the rendition is quite pleasing. At 0.293 bits/pixel the only
significant distortion is in the grass area, which of course is not efficiently represented by a

smooth model. Interestingly, the grass is rendered fairly well starting at 1600 domains.

110

Domains | Order Boundary Coefficient Total Bit Rate | PSNR
Information Information | Information
100 3 6155 2390 8545 0.130 24.50
200 2 9643 3479 13122 0.200 26.39
400 2 12999 6180 19179 0.293 27.28
800 2 16467 12419 28886 0.441 29.03
1600 1 25046 13566 38612 0.589 29.57
3200 0 44022 12554 56576 0.863 32.28
Table 8.7
Piecewise Smooth Code Data
Cameraman

Table 8.8 is data for Baboon, which is included because it is pathologically non-smooth (it is
almost entirely texture). Surprisingly, even Baboon is visually pleasing at 100 domains and at
800 the rendition is becoming quite good. What these results show is that even highly non-
smooth features can be rendered if enough domains are used. Since the coefficients of each
domain can be quite heavily quantized under these conditions, the representation can be more

efficient than may be expected.

Domains |Order |Boundary Coefficient Total Bit Rate [PSNR
Information Information Information

100 3 5589 2603 8192 0.125 21.42
200 3 10072 7120 17193 0.262 22.36
400 3 16211 14507 30717 0.469 23.29
800 2 31966 16104 48070 0.733 24.82
1600 2 46183 36033 82216 1.255 26.97
3200 1 61581 38217 99798 1.523 27.69

Table 8.8

Piecewise Smooth Code Data
Baboon

8.4 Sample Partitions

We now present some sample partitions used in our coding experiments. Only the most
interesting partitions are included. The 100 domain Lena partition seen previously in Chapters
5, 6, and 7 is not included here. TFigure 8.2 shows an interesting partition of Lena’s face and is
exemplary of the power of the piecewise-smooth extraction method. Figure 8.3 is a 100

domain partition of the cameraman image. The sky in this image is notoriously difficult to

111

partition. Note the single short boundary segment extending from the head to the top of the

image. This strategic behavior is typical.

Figure 8.2 Figure 8.3
Domain Boundaries Domain Boundaries
200 Domain Lena 100 Domain Cameraman

Figure 8.4 is included to show how additional domains fill in the cameraman image. Figure 8.5

shows how domains are allocated to simulate the hair and whiskers of the baboon image

112

Figure 8.4 Figure 8.5
Domain Boundaries Domain Boundaries
400 Domain Cameraman 400 Domain Baboon

Figure 8.6 and Figure 8.7 show the excellent models developed for head and shoulders images.

Again note the short boundary segments extending from the head to the top of the image.

Figure 8.6
Domain Boundaries
100 Domain Miss America

113

Figure 8.7
Domain Boundaries
200 Domain Miss America

8.5 JPEG Comparison

Figure 8.8 compares the rate distortion performance of JPEG and the piecewise smooth code
on the Miss America image. The piecewise smooth technique is superior up to 0.3 bits/pixel.
At this point the only remaining distortion for both techniques is in their rendition of the
overlying 2.5 bits of noise. Although the parameter space for the piecewise smooth technique
has not been fully searched for higher bit rates on this image, it appears that JPEG may
perform better on this noise. Fortunately, noise can easily be replaced by synthetic means at no

additional cost.

Figure 8.9 compares both techniques on Lena. Again the piecewise smooth code is superior at
low bit rates and remains competitive at higher bit rates. The perceived distortion disparity
between the techniques on this image is even greater than the measurements indicate. The
piecewise smooth code is doing quite well perceptually at 0.4 bits/pixel whereas noticeable

JPEG artifacts do not disappear until near 1 bit/pixel.

114

43 43
0 9}/ A 39 —
B X
x 39 x 35 o o
z | 171 z P
[N V2. o O
37 31 w//z/
35 { 27 G/IZT
3 23 o
00102030405060708091 002040608 1121416182
Bits/Pixel Bits/Pixel
= JPEG = JPEG
<~ PSmooth <~ PSmooth
Figure 8.8 Figure 8.9
Rate Distortion Comparison Rate Distortion Comparison
Miss America Lena

Figure 8.10 shows how JPEG never really does get the high contrast edges right. The
piecewise smooth Cameraman results are superior to JPEG even at 1 bit/pixel. Figure 8.11
shows the surprising result that the piecewise smooth method is supetior to JPEG even on the
Baboon image. Again the piecewise smooth technique performs better at low bit rates. The

supetior performance at higher bit rates is inexplicable.

38 30
36 = 29
34 28 >
32 © 27 O —
% 30 i > % 26 T
o 28 o 25
= 2 - & 24
24 Fr 23
22 22 2
20 _n’/ 21 g//
18 20
002040608 112141618 2 002040608 112141618 2
Bits/Pixel Bits/Pixel
= JPEG = JPEG
<~ PSmooth <~ PSmooth
Figure 8.10 Figure 8.11
Rate Distortion Comparison Rate Distortion Comparison
Cameraman Baboon

115

8.6 Summary

We applied piecewise-smooth coding to several natural images. We showed the piecewise-
smooth model extraction parameters used for each image. We developed a simulated decoder
consisting of the stroke code of Chapter 6 and the sentinel point code of Chapter 7 and
presented coding results for each image. We compared the piecewise-smooth code to the
JPEG lossy image compression standard. Rate/distortion performance of the piecewise-

smooth code is superior to JPEG in many instances and is never significantly inferior

The simulated data does not make use of the Cholesky method for determining supported
sentinel points. For this reason, some sentinel points are unnecessarily coded. Once this
shortcoming is addressed, the bit rate for a given distortion will be reduced. The reduction
should be most significant at higher bit rates where image models are comprised of mostly

smaller regions.

116

9. Conclusion

9.1 Main Contributions

In Chapter 2 we introduce benchmark piecewise-quadratic synthetic images and use them to
quantitatively evaluate a piecewise-smooth model extraction algorithm. Both noise-free and

noisy benchmarks are presented.

In Chapter 3 we develop moment operators for use in finding least squares piecewise-
polynomial approximations of multidimensional data. We introduce terminology for
describing the components of multidimensional least squares normal equations. The natural
moment matrix is comprised of moments of the independent variables. The forcing moment
matrix is comprised of moments of both the independent and dependent variables. We
develop complete natural moment matrices, forcing moment matrices and least squares error
functions for first, second, and third order two-dimensional polynomials. We extend the
Cholesky factorization of symmetric positive definite matrices to symmetric positive
semidefinite matrices. We use the modified Cholesky factorization to determine the

polynomial coefficients supported by a domain.

In Chapter 4 we develop a general greedy domain growing algorithm for image partitioning
that can jointly optimize model complexity and model fidelity. We apply the moment
operators and error functions of Chapter 3 to the greedy cost function. If N is the number of

pixels in the partitioned image, the computational complexity of the algorithm is bounded by

O(Nlog® N).

In Chapter 5 we develop the raster-break as a formal measure of boundary noise in an image
partition and use it to design a state-machine boundary smoothing algorithm. We apply the
moment operators and error functions of Chapter 3 to the smoother’s cost function. The

computational complexity of the smoother is O(N) .

In Chapter 6 we develop a new chain code for representing the boundaries of a partitioned

image. The stroke code is the first code to handle the three direction chain termination

117

problem on image partitions. We apply the raster drawn boundary criteria of Chapter 5 to
develop improved chain direction probability estimation contexts. The stroke code is shown to

be superior to raster neighbor codes on sparse image partitions.

In Chapter 7 we develop a method of reconstructing approximating polynomials over arbitrary
two-dimensional domains using approximated values at certain geometrically implicit points
interior to each domain. We call these points sentinel points. If M and N atre the maximum
extent of a domain in each of its dimensions, we develop O(M + N) algorithms for finding
optimal sentinel points. The number of sentinel points found for a domain corresponds to a
global maximum polynomial order and is reduced by the number of unsupported polynomial
terms. The Cholesky method of Chapter 3 is the arbiter of a domain’s supported polynomial
terms. Using the natural moments of the sentinel points and the forcing moments of the
original data, we develop an O(1) algorithm for optimizing the quantized values of the sentinel
points. We develop a quality metric to experimentally evaluate the reconstructed polynomial
when the sentinel point values are quantized. We develop a method for coding polynomial
functions over arbitrary two dimensional domains by applying quantization and differential
predictive coding to each domain’s sentinel point values. We use a simple global functional
dependence to vary the amount of quantization applied to sentinel points based upon a

domain’s size.

In Chapter 8 we develop a complete code for representing piecewise-smooth image models.
The stroke code of Chapter 6 and the sentinel point code of Chapter 7 are the main elements
of the code. We evaluate the code on several commonly available images. Rate/distortion

performance is superior to JPEG in many instances and is never significantly inferior.

9.2 Future Work

The data of Chapter 8 show that the piecewise smooth code is robust across a wide variety of
images. At times, it outperforms JPEG by a wide margin and the converse does not appear to
be true. What we haven’t yet discussed are the weaknesses of the method and possible areas of

improvement.

118

First of all, the piecewise-smooth model extraction parameter space has not been searched
systematically. Second, both extraction and coding methods have not been fully analyzed. The

biggest remaining hole in the method is the incomplete coding model for sentinel point values.

What’s really exciting is that good results have been achieved when there are still many areas of
possible improvement. Further, the piecewise-smooth image decomposition is an important
new image segmentation algorithm and many related applications can be envisioned. We next
discuss just a few of the possible areas for improvement and extension of piecewise-smooth

image modeling.

9.2.1 Model Extraction

The piecewise-smooth model extraction procedure could be improved in several ways. Using
the measures developed in Chapter 4, the noise suppression parameter of the domain
extraction algorithm could be made proportional to boundary noise instead of boundary
length. Probably the single change that would most improve performance would be to weight
model error using /local variance. The result would be better separation of textured and smooth

image areas.

Of larger significance is that the greedy domain growing algorithm is really more appropriate as
the middle level of a hierarchical vision system. Local image and domain structure could be
used at a lower level to develop a seed partition that if used as input to the greedy procedure
would lead to a more optimal overall result. Additionally the high memory requirement for
complete domain management would be lessened since the number of domains would be

reduced prior to invoking the greedy procedure.

9.2.2 Model Coding

At the lowest bit rates, boundary information tends to dominate the overall code. An approach
that might work to lower boundary information in sparse partitions is zultiscale chain coding.
When coding at very low rates, it is not very clear whether or not just to start from a
subsampled image. If a multiscale approach was applied to the boundary code and additional

information was needed for an excursion from an even boundary site, a quantitative tradeoff

119

with subsampling could be made. At higher bit rates, a full investigation needs to be made to
see whether additional context information can extend the stroke code to dense partitions or, if

not, what other method might be preferred.

The sentinel code simulation does not yet include the capability to systematically exclude
coefficients in underdetermined domains that have more pixels than coefficients. Adding this
capability in a synergistic way with the extraction procedure would allow for implicit
determination of optimal model order for each domain of a partition. Optimal model order
could also be made a function of domain size similarly to the size-variable quantization applied

to domain sentinel points.

A study of predictors for the sentinel code is needed. Also, the sentinel code does not include
prediction information from previously coded adjacent domains. This znter-domain information

would be most useful for reducing code string length at higher bit rates

9.2.3 Extensions

The most obvious area that needs to be addressed is color, both true color and color maps.
Also, optimizations for black/white images could extend the method to more types of images.
Texture analysis and synthesis also appear to be directly applicable to the method. Finally, a
mechanism for perturbing the model between frames of an image sequence would extend the

method to motion estimated video.

120

10. References

! David Matr, Vision, W. H. Freeman and Company, San Fransisco, 1982.

2 Robert M. Haralic and Linda G. Shapiro, “SURVEY Image Segmentation Techniques”,
Computer Vision, Graphics and Image Processing 19, 1985, 100-132.

3Y. J. Zhang, “Segmentation Evaluation and Comparison: A study of Various Algorithms”,
SPIE Vol. 2094, 1993, 801-812.

+T. N. Cornsweet, Visual Perception, Academic Press, New York, New York, 1970.

> Gilbert Strang, Linear Algebra and its Applications, 3* Ed, Harcout Brace Jovanovich
College Publishers, New York, New York, 1988.

¢ William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical
Recipes in C, Cambridge University Press, Cambridge, United Kingdom, 1988.

"Stuart Gemen and Donald Gemen, "Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images", IEEE Transactions on Pattern Analysis and Machine Intelligence,

No. 6, November, 1984, pp. 721-741.

8Yvan G. Leclerc, "The Local Structure of Image Intensity Discontinuities”, Ph.D. Thesis,
McGill University, Montreal, Quebec, Canada, 1989

9 Ferran Marques, Antoni Gasull, Todd R. Reed and Murat Kunt, “Coding-Oriented
Segmentation Based on Gibbs-Markov Random Tields and Human Visual System
Knowledge”, Proc. ICASSP Vol. 4, Toronto, Canada, May 14, 1991, pp. 2749-2752.

10 Jacob Sheinvald, Byron Dom, Wayne Niblack, and David Steele, “Unsupervised Image
Segmentation Using the Minimum Description Length Principle”, Research Report, IBM
Almaden Research Center, 1991.

" Oh-Jin Kwon and Rama Chellappa, “Segmentation-based image compression”, Optical
Engineering, Vol. 32 No. 7, July 1993, 1581-1587.

12 P. J. Besl and R. C. Jain, “Segmentation throu%il variable-order surface fitting”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10, 1988, 167-192.

13 Thomas H. Cormen, Chatles E. Leiserson and Ronald L. Rivest, ~Algorithms, McGraw-Hill,
New York, 1990.

14 1 Hussain and T. R. Reed, “Compression of still images using segmentation-based
approximation”, SPIE Image and Video Compression, Vol. 2186, 1994, 134-145.

15 M. Kass, A. Witkin, and D. Terzopoulos, “SNAKES: Active contour models.”,Int. J.
Computer Vision, Vol. 1, No. 4, 1987, 321-331.

16 James D. Foley, Andries van Dam, Steven K. Feiner and John F. Hughes, Computer
Graphics Principles and Practice, Addison Wesley, Reading, Massachusetts, 1990.

17 Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Addison-Wesley,
Reading, Massachusetts, 1992.

18 Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black-White Images with
Arithmetic Coéing”, IEEE Transactions on Communications, Vol. COM-29(06), pp. 858-867
(June 1981).

19 Robert R. Ester, Jr. and V. Ralph Algazi, “Efficient error free chain coding of binary
documents”, Proc. Data Compression Conference, Snowbird, Utah, March 28, 1995, pp.
122-131.

121

20 Martin J. Turner, “Entropy Reduction via Simplified Image Contourization”, NASA Space
and Earth Science Data Compression Workshop, Snowbird, Utah, March 27, 1992, pp. 27-
42.

21 Stephen R. Tate, Lossless Compression of Region Edge Maps, CS-1992-9, Department of
Computer Science, Duke University, Durtham, NC, 1992.

22 C. E. Shannon, “A Mathematical Theory of Communication”, The Bell System Technical
Journal, Vol. XXVII No. 3, July, 1948, 379-656.

23 W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, Jr. and R. B. Arps, “An overview of the
basic principles of the Q-Coder adaptive binary arithmetic coder”, IBM Journal of Research
and Development, Vol. 32(6), pp. 717-726 (November 1988).

24 Murat Kunt, Michel Benard and Riccardo Leonardi, “Recent Results in High-Compression
Image Coding”, IEEE Transactions on Circuits and Systems, Vol. CAS-34, No. 11,
November 1987, 1306-1336.

122

