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Piecewise-Smooth Modeling of Digital Images 

Paul J. Ausbeck Jr. 

Abstract 

We introduce the piecewise-smooth image model.  We develop efficient algorithms for model 

extraction and representation when the smooth model component is limited to third order 

two-dimensional polynomials.  We apply the model to lossy image coding and compare its rate-

distortion performance against the JPEG image compression standard.  On some images 

tested, the piecewise-smooth code outperforms JPEG by a wide margin, and it is never 

significantly inferior. 

As byproducts, we introduce moment operators to aid in multidimensional piecewise-smooth 

surface fitting.  We extend the Cholesky factorization of symmetric positive definite matrices to 

symmetric positive semidefinite matrices.  We develop a general image segmentation algorithm 

that outperforms any previously reported method.  We introduce the raster-break measure of 

boundary noise and apply it to a fast state-machine boundary smoother.  We develop the 

stroke method for chain coding contours.  It is the first method to efficiently solve the three-

direction chain termination problem.  We develop the method of sentinel points for minimally 

coding polynomial surfaces over arbitrary two-dimensional domains. 
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1. Introduction 

Despite considerable efforts over a long period, the theory and practice of segmentation 
remained primitive for two reasons.  First, it was well-nigh impossible to formulate precisely in 
terms of the image or even of the physical world what the exact goals of segmentation were. 
…David Marr, Vision (1982).1 

In introducing his idea of the 2½-dimensional sketch, Marr presented a simple image of two 

leaves that gave vision to his belief that the idea of segmentation was bound to fail.  We won’t 

reproduce that image here, but in the next chapter we introduce a synthetic benchmark 

problem with identical characteristics.  That benchmark is the real introduction to the piecewise-

smooth image model. 

For now we will be content to say that the piecewise-smooth image model lays a mathematical 

foundation for the image segmentation problem.  Because of this, we use different 

segmentation terms than those with which the reader may already be familiar.  We refer to a 

segment or region as a domain.  We refer to the segmentation process as model or domain 

extraction and to the resulting segmentation as a an image partition.  We apologize in advance if by 

Chapter 9 the reader does not appreciate the use of these terms. 

Image segmentation is really only the lowest level attack on the problem of image understanding.  

The fundamental importance of the piecewise-smooth model to image understanding can be 

most easily understood by relating it to the problem of realistic image synthesis.  All of visual 

cues* that allow us to give life to a synthetic scene are either piecewise-smooth intensity 

processes or texture processes linearly interacting with an underlying piecewise-smooth model.  

The example presented in Chapter 1 clearly shows how even simple smooth intensity processes 

give depth and character to an image.   

The piecewise-smooth image model canonically represents two of the most important 

perceptual elements of an image: smoothly varying intensity patches and step intensity 

discontinuities.  Further, if the piecewise-smooth image component is captured and isolated, 

the remaining small-scale or texture component can be more easily  analyzed.   
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In Chapter 2 we develop a simple problem example as an overview of the piecewise-smooth 

image model.  The moment operators of Chapter 3 enable the greedy domain-growing model 

extraction algorithm of Chapter 4.  In Chapter 5 we define the raster-break as a formal measure 

of boundary noise and use it to develop a state-machine boundary smoother.  In Chapter 6 we 

begin to address model representation by developing the stroke domain boundary code.  In 

Chapter 7 we develop the sentinel point method for minimally encoding polynomials over 

arbitrary two-dimensional domains.  In Chapter 8 we apply the piecewise-smooth machinery to 

lossy image coding and compare the results to the JPEG image compression standard.  

Chapter 9 is a summary of our results in more detail than presented here. 

                                                                                                                                                 
* An arguable exception is shape from texture. 
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2. Canonical Piecewise Smooth Example 

In introducing a new subject,  a canonical problem example is often most useful.  Figure 2.1 is 

a synthetic example of a piecewise smooth gray scale image.  It has 256x256 pixels, each with 

gray level value between 0 and 255 and being the fifteenth in a series of experiments is 

designated Syn15.  The image was generated with the 11 pixel intensity functions in Table 2.1.  

Domain A was split into three pieces by the subsequent overlay of domains B, E, F, and K, 

resulting in a total of 13 connected domains. 

In a piecewise smooth image, each of the pieces, or domains, contains a subset of the pixels of 

the image. The union of all such domains contains all the pixels of the image and the 

intersection of any two domains is null.  Each domain is also connected.  That is, for any two 

pixels in a domain:      p D j k p pi j k, ( )rectilinear path wihin Di .  A rectilinear path contains 

only vertical and horizontal movements through the centers of square pixels that. 

K

J

I
H

G

F

E

D

C

B

A3

A2

A1

Figure 2.1 
Synthetic Image Syn15 

A . .5 5 128x y   
B x  48  
C 255  
D . .0060 152 176xy y   
E     . .062 062 8 12 6722 2x y x y  
F    

 
. . .

. .

039 039 0469

168 17 4 2189

2 2x y xy

x y
 

G    . . .027 6 23 593 1276xy x y  
H    . . .00625 9 16 182xy x y  
I    . . .00625 9 16 230xy x x  
J 32  
K    

 
. . .

.

048 194 61

285 178 3798

2 2x y xy

x y
 

Table 2.1 
Synthetic Patch Intensity Functions 
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Each domain has a smooth pixel intensity function that determines the values of its pixels.  

Since any image is piecewise smooth if a different domain is assigned to each pixel, to make 

this classification interesting we must also limit the number of domains.  For our purposes, an 

image is piecewise smooth if it can be efficiently modeled with N D  domains and 

N D 

log2

, where   is the number of pixels in the image. 

For the rest of this thesis, we further restrict the pixel intensity functions to two dimensional 

polynomials of order three or less: 

( , )x y ax bx y cxy dy fx gxy hy ix jy k         3 2 2 3 2 2 . 

Syn15 itself is comprised of second order or smaller polynomials as it was produced during 

development of the second order extraction procedure.   

2.1 Model Extraction 

It seems clear that to minimally code Syn15 it would be desirable to discover the original 

processes used to generate it.  In this case, these piecewise smooth processes are known 

beforehand so we can quantitatively evaluate any extraction procedure.  Fortunately (for a 

thesis topic), a literature search2,3,7,10,11,12 does not provide a technique that seems appropriate 

for recovering all 13 domains of Syn15.  Its intensity function contains too much gradient that 

is not associated with a boundary between domains.  Additionally, several edges in the image 

do not have any intensity discontinuity.  Taken together, these two characteristics make the 

recovery of an accurate partition an impossible task for previously reported segmentation 

algorithms:  edge linking, split and merge, thresholding, or region growing.  Existing 

segmentation techniques are discussed further in Chapter 4. 

In Chapter 3 we develop techniques that use moments to help work with polynomial 

approximation functions over arbitrary two-dimensional domains.  In particular, we develop 

O( )1  (bounded by a constant) methods for the following domain operations: 
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 Determining a domain’s approximate pixel intensity function. 
 Determining the total squared error between a domain’s approximation and the 

actual pixel values in the domain. 
 Merging two domains. 
 Excising one domain from another. 
 Adding and removing a pixel from a domain. 

With these in hand, in Chapter 3 we develop an algorithm for greedy domain growing that is 

particularly effective for partitioning images such as Syn15.  Figure 2.2 shows the domain 

boundaries extracted from Syn15 by merging until only 13 domains remain.  Table 2.2 shows 

the corresponding extracted intensity functions.  The domain alignment is within a single raster 

row or column for all domains, and the mean squared error (MSE) between the pixel values 

predicted by the extracted intensity functions and their actual values is 0.228. 

Since few real images are perfectly piecewise smooth, it is instructive to examine how the 

algorithm behaves against a member of the larger class of images that are piecewise smoothly 

textured.  Synthetic image Syn16, shown in Figure 2.3, is Syn15 with additive gaussian noise 

(=16).  The result of partitioning Syn16 via greedy domain is shown in Figure 2.4.  One of 

several obvious problems is that domains B and C have been merged. 

G

IH

J

D

F

C

B

K

A3

A2

A1

E

Figure 2.2 
Domains Extracted from Syn15 

A1 . . .5 5 127 75x y   
B x  48  
C 255  
D . . . .0060 153 013 174 4xy y x    
E     . . .062 062 8 12 672 62 2x y x y  
F    

 
. . .

. .

039 039 0469

168 17 4 2189

2 2x y xy

x y
 

G     . . . .007 027 6 3 6 28 13202y xy x y  
H    . . . .0063 9 16 182 6xy x y  
I    . . . .0062 9 16 2313xy x x  
J 32  
K    

 
. . .

. .

048 194 61

285 178 3796 2

2 2x y xy

x y
 

Table 2.2 
Pixel Intensity Functions Extracted from Syn15 
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The algorithm of Chapter 3 is able to jointly optimize both a bulk property such as MSE and a 

boundary property such as overall length.  Boundary length is important from a coding 

perspective in that longer boundaries take more bits to encode.  A generalization of this coding 

cost argument, called the Minimum Descriptive Length Principle8, asserts that if two or more 

possible interpretations of a set of data exist, the simplest is often the best.  Another way of saying 

this is that nature prefers simplicity.  It certainly would have been quite difficult to generate a 

synthetic image with the boundaries of Figure 2.4. 

The result of performing a joint optimization of boundary length and MSE with a boundary 

length weighting factor of 256 is shown in Figure 2.5.  The result contains the correct number 

of domains and has good boundary alignment everywhere where the signal-to-noise ratio is 

greater than -6 dB. 

Although the partition of Figure 2.5 is quite good, much of the boundary is perceived as noisy 

or irregular.  In addition to being perceptually somewhat annoying, this noisy boundary is 

unlikely to correspond to real image features and is also difficult to code compactly.  In 

Chapter 4 we develop a formal measure of boundary noise and use it to develop a procedure to 

smooth previously extracted boundaries.  The core of this procedure is a boundary following 

state machine that recognizes loci of irregularity and transforms them to smoother 

I

D

J

A3

G

A2

H

F

C

BA1

K

E

Figure 2.3 
Synthetic Image Syn16 

 
Figure 2.4 

Initial Domains Extracted from Syn16 
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configurations.  The method of Chapter 3 allows the smoother to efficiently optimize 

boundary noise against pixel intensity function error.   

Figure 2.6 is the result of smoothing the domains of Figure 2.5.  The loci of irregularity, or 

raster breaks in the terminology of Chapter 4, are shown as darker dots along the boundary on 

both figures.  In its present form, the smoother is constrained to monotonically decrease the 

overall boundary length.  Lifting this restriction could result in some increased recovery of the 

curvature of the circular boundary, but the noise is larger than the underlying signal over much 

of this boundary and it is not clear exactly what improvement can be attained.  Interestingly, 

the perceived sphere is quite clear even though the noise completely obscures the actual 

boundary.  This is probably due to the parabolic illumination function centered over the circle.  

This illumination is responsible for turning the circle into a perceived sphere and the 

persistence of this illusion is quite strong even when the boundary is obscured by noise. 

2.2 Model Coding 

A viable piecewise-smooth model extraction procedure allows us to produce some new results 

for coding model parameters.  Chapter 5 describes a chain coding procedure for domain 

boundaries.  A three direction (left, right, straight) chain is used.  Further information supplies 

chain start points and multiplicity:  clockwise, counterclockwise or both.  The chains are self-

 
Figure 2.5 

Syn16 Domain Extraction with Noise Suppression 

 
Figure 2.6 

Smoothed Syn16 Domains 
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terminating at tee intersections with previously encoded boundaries.  Disambiguation 

information distinguishes terminating and continued corner junctions.  Probability estimation 

contexts are used to further reduce the code length of each chain.  Significantly, these contexts 

are not comprised of a set number of previous events.  Rather, they are the boundary states 

used by the boundary smoother of Chapter 4.  The synergy produced by the coder knowing 

that the boundary is smoothed allows for improved coding performance. 

Table 2.3 shows the results of coding the three partitions that we have seen thus far.  The first 

line of the table is for the boundary extracted without noise suppression.  The second line 

corresponds to the noise suppressed extraction.  The third line is data for the smoothed 

boundary.  The reduction in code length between lines 1 and 2 is due primarily to a 2:1 

reduction in the length of the boundary.  This is understandable since the noise suppression 

was achieved by including boundary length as a parameter of the extraction procedure.  Lines 2 

and 3 illustrate how reducing the number of raster breaks in the boundary has a dramatic effect 

on the boundary code string length.  The smoothed boundary is only 20% shorter but its code 

string length has been reduced by 60%. 

The last column of Table 2.3 shows how the noise really dominates this problem.  When 

comparing two 256 level grayscale images, the peak signal to noise ratio (PSNR) is defined as 

20
256

log
MSE

.  Since Syn16 is Syn15 with =16 noise, the expected value of PSNR for a 

perfect extraction of the underlying piecewise smooth model is 20
256

16
24 08log .  dB.  All 

three examples are very close to this value and the importance of introducing the additional 

boundary length and smoothness constraints to achieve the final result is clear.  

Example Separators Raster Breaks Bits PSNR 
Unsuppressed 4160 904 6020 24.18 
Suppressed 2362 348 2895 24.37 
Smoothed 1876 48 1208 24.35 

Table 2.3 
Syn16 Boundary Coding Statistics 
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Chapter 6 presents a new procedure for coding 2D polynomial pixel intensity functions.  The 

key to the method is a set of sentinel points, whose locations are calculable only from domain 

geometry, for which modeled values are transmitted.  Using these points, a standard least 

squares solution is derived for the entire domain.  The most important aspect of the procedure 

is the method for choosing the sentinel points.  This becomes particularly interesting for third 

order polynomials, where 10 points must be chosen for each domain.  Figure 2.7 shows the 

sentinel points for the smoothed model extracted from Syn16.  Since this is a second order 

image, there are six sentinel points per domain. 

Since the sentinel points lie within their associated domain, their values are constrained to lie 

within the range of image representation, or for our 256 level grayscale images,  between 0 and 

255.  The base number of bits necessary to code a sentinel point value is set by an associated 

quantization step size, Qstep .  The quantization step size is the minimum difference between 

two dissimilar values.  Since our values are constrained between 0 and 255, this base bit 

quantity is log2

256

Qstep
. 

Table 2.4 shows the results of coding Syn15 with no quantization and with eight quantizer step 

sizes of 1 - 128.  The fourth and fifth columns show the error between the coded model and 

 
Figure 2.7 

Implicit Code Points 

 
Figure 2.8 

Decoder Reconstruction, Qs = 64 
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the original image at the various steps.  The third column shows the squared quantization noise 

that would be expected if the original image were quantized directly at that step size and the 

values falling into each quantizer bucket were uniformly distributed  What is interesting is that 

for this experiment, the error produced by quantizing the sentinel points is comparable or less 

than the error expected from quantizing the image directly.  This verifies that the algorithm for 

choosing sentinel points is operating fairly well for domains having shapes similar to those of 

Syn15.  Figure 2.8 shows a reconstruction of Syn15 with the values of the sentinel points 

quantized using a Qstep  of 64.  The error introduced by quantization is perceptible but not 

objectionable even at this quantization level. 

The number of bits needed to code the sentinel point values can be further reduced by using 

prediction.  Table 2.5 shows the result of using both quantization and prediction on the 

sentinel points of Syn16.  The predictor used is the average value of the sentinel points received 

thus far for each domain.  Since the first point received for each domain is not predicted, only 

the second and subsequent sentinel points benefit from prediction. 

The most interesting feature of Table 2.5 is the interaction of actual image noise with 

quantization noise.  The MSE of the reconstruction is not appreciably effected by quantization 

noise until its amplitude approaches the amplitude of the noise in the source image.  For real 

images the analog to the introduced noise of Syn16 are features such as texture that are not 

piecewise smooth. 

Q Step Size Bits/Coef.  Reference Qnoise MSE PSNR 
-  - 0.228 54.6
1 8 .25 0.417 51.9
2 7 .5 0.662 49.9
4 6 1.5 1.92 45.3
8 5 5.5 5.68 40.6

16 4 21.5 17.5 35.7
32 3 85.5 69.7 29.7
64 2 341.5 251.2 24.1

128 1 1365.5 937.8 18.4
Table 2.4 

Syn15 Implicit Point Quantization 
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The significance of this is that pixel intensity functions can be quantized more heavily when the 

distortion before application of quantization is already high, such as when modeling a highly 

active image with only a few domain.  Quantization distortion only becomes noticeable when 

its level approaches the error of the full precision piecewise approximation. 

Perhaps the most significant assertion of Chapter 6 is that the smaller the domain size, the 

more its pixel intensity function can be quantized before introducing additional perceptible 

distortion.  One reason for this is the nature of the extraction algorithm. Since smaller domains 

have a larger periphery to area ratio, they are preferentially merged to minimize the  boundary 

length term of the model cost function.  Clearly, the smaller the domain, the more its intensity 

must differ from its neighbors for it to persist during domain growing.  Since small domains 

differ significantly in intensity from their neighbors, they can be quantized more heavily before 

distortion becomes noticeable. Experiments in human perception4  have shown that the 

human eye has reduced sensitivity to intensity changes at low and high spatial frequencies.  

Since the smaller the domain the higher its associated spatial frequency, the more it can be 

quantized before introducing noticeable distortion. 

The domain size and model fidelity dependencies combine to allow for significant quantization 

over a wide range of compression ratios.  When compression is high, the overall error is 

already significant before quantization and therefore quantization can be quite heavy before it 

introduces additional distortion.  When compression is low, most of the domains are quite 

Quantizer Step Size Code Bits  Entropy MSE PSNR 
- - - 238.7 24.35 
1 453 5.37 238.8 24.35 
2 415 4.98 239.1 24.35 
4 369 4.47 239.9 24.33 
8 324 3.97 243.9 24.25 

16 257 3.15 254.6 24.07 
32 189 2.3 306.1 23.27 
64 122 1.47 455.4 21.55 

128 85 1.09 1070 17.84 
Table 2.5 

Syn16 Implicit Point Quantization and Prediction 
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small and can be quantized more heavily.  The amount of quantization applied to a domain of a 

given size is determined implicitly by a simple size rule known to both the encoder and decoder.  

No additional information is needed to specify the amount of quantization applied to a given 

domain. 

2.3 Coding Experiments 

In Chapter 8 we apply piecewise smooth coding to four commonly available images: Lena, 

Cameraman, Baboon, and Miss America.  The experimental results are compared to the JPEG 

lossy algorithm for bit rates of approximately 0.125 to 1.0 bits/pixel. 

To motivate these results, Table 2.6 gives coding results for Syn15 and Syn16.  Unfortunately, 

the amount of fixed overhead in JPEG precludes it from coding at comparable rates.  Of 

course, excellent piecewise smooth performance is expected from canonical examples. 

Since JPEG is not designed to code below about 0.5 bits/pixel and changes in its design can 

increase its performance in the low bit rate regime, it is not fair to criticize its performance at 

low bit rates.  What the data show, we believe, is that piecewise smooth coding is robust across 

a wider range of images than JPEG.  What the data cannot show is the nature of the distortion 

produced by each method.  We believe that the distortion introduced by piecewise smooth 

coding is significantly less objectionable than the block DCT artifacts of JPEG. 

Image Piecewise-Smooth Bits MSE PSNR JPEG Bits MSE PSNR 
Syn15 1661 0.417 51.9 4088 1011 18.09 
Syn16 1465 254.6 24.07 4104 1242 17.19 

Table 2.6 
Coding Results for Syn15 and Syn16 
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3. Moments of Two Dimensional Domains 

Recall the first canonical example from Chapter 0 where we synthesized the image of Figure 

2.1 from the polynomial intensity functions of Table 2.1.  We now develop some powerful 

tools for addressing the inverse problem of recovering Table 2.1 from Figure 2.1.  These tools 

are moment operators that manipulate sub-domains of an encompassing global domain.  The 

moment operators are a general solution to the problem of fitting a piecewise-smooth surface 

through multidimensional data.  Because this is a general problem we won’t mention images in 

this chapter.  We do remember that we are addressing the image problem, however, and all 

specific results are confined to the two-dimensional problem.   

3.1 A Digression 

I still remember the summer before my high school junior year and the purchase of my first 

scientific calculator.  I pored over every feature of that Texas Instruments SR51 and read the 

manual from cover to cover.  I remember in particular its ability to turn random pairs of x and 

y coordinates into the slope and intercept of the best fit straight line through them.   

One proceeded by entering in turn each coordinate pair into its respective register and pressing 

the + key.  A mistake or change of mind was rectifiable without doing everything over again 

by entering the data point to be removed and pressing .  When all points had been entered 

the slope and intercept were a touch of the SLOPE and INTCP keys away.   

My only significant use of this feature was to extract organic reaction rates from experimental 

data as a college sophomore.  The venerable SR51 died shortly thereafter and although the 

HP41C bought as a replacement also had the same capability, I never had use for it again.  

Until recently. 

3.2 Moments 

Linear regression against a single dimensional function is the simplest use of the method of least 

squares. The least squares metric simply minimizes the sum of the squares of the differences 

between the actual ordinates and their corresponding straight line predictions.  It turns out that 
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the slope and intercept of the straight line that best approximates a set of data points in the 

least squares sense can be calculated by solving the following system of linear equations: 5 

1
2
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where the xi  and yi  are the independent and dependent coordinates of the data points and 

the sums are over all the data points. 

We develop this further later, but for now the interesting thing is that once we have performed 

the sums, we can calculate with a fixed number of operations the parameters of the best fit 

straight line no matter how many data points we have.  We can also add and subtract single or 

groups of data points, not wasting any previously expended effort, and recalculate new 

approximation parameters with the same fixed number of operations. 

The sums at the heart of this technique are commonly called moments.  They are the discrete 

analogs of parameters such as center of mass and center of inertia that are commonly 

encountered in introductory calculus.  As we extend the method to more than one dimension 

and to second and third order approximation functions, we encounter moments that become 

increasingly numerous and complex, so let’s develop a shorthand sum notation. 

We focus on the two dimensional problem and use x  and y  as the independent variables, 

with z  as the dependent variable.  The shorthand we use simply replaces the summation with 

the single letter S  and makes the various powers of x , y  and z into subscripts.  For example 

x y z Si i i x y z

2 2 2
2 2 2  Shorthand . 

Each problem order has two sets of moments.  Since we weren’t able to find terms for these 

sets in the literature, we coin new terms.  The set of natural moments appears in the natural moment 

matrix on the left side of the equals sign and contains only sums of powers of the independent 

variables.  The set of forcing moments comprises the forcing moment matrix on the right side and also 
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contain powers of the dependent variable.  The natural moments are designated N and the 

forcing moments F .  The union of N  and F and S
z2  is M  and is called the moment set of 

problem instance. S
z2 is not needed to find the least squares solution but is used later when 

determining the error between a domain’s data and its polynomial approximation function. 

3.3 Domain Operations 

Our ultimate intent is not to find a single polynomial approximating function for a set of data, 

but to find a piecewise smooth approximation.  To do this, we break the problem into a set of 

disjoint domains, the union of which is the global problem domain.  We next define four 

operators that enable us to manipulate these domains via their moment sets: 

 add M p S M S S x y z
x y z x y z p

i
p

j
p

k
i j k i j k( , ) :     

 remove M p S M S S x y z
x y z x y z p

i
p

j
p

k
i j k i j k( , ) :      

 merge M M S M S S Si i i( , ) :            
 excise M M S M S S Si i i( , ) :            

These operations let us efficiently add and subtract data points from a moment set and merge 

and separate two moment sets.  Obviously, each of these operations is O M( )  where M  is 

the number of moment sums in a moment set.  We see in the following sections that M  for 

two dimensional domains is 10 for linear, 22 for quadratic and 38 for cubic approximating 

polynomials. 

This chapter focuses only on fast methods for manipulating moment sets.  The methods 

developed are used in later chapters.  The greedy domain extraction algorithm of Chapter 3 

uses the add and merge operations.  The smoothing algorithm of Chapter 4 uses the add, 

excise and merge operations. 

3.4 The Two Dimensional Linear System 

In Section 3.2 the least squares system of equations for the one dimensional linear regression 

problem was given without justification.  In two dimensions the problem becomes slightly 

more complex, but is still small enough to go through all the details that we  gloss over for 
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higher order systems.  Given a data generation function, z p x y ( , )  over a domain D  our 

task is to minimize point by point the square of the error between a two dimensional linear 

approximation function, f x y ix jy k1 ( , )    , and the data generation function.  In other 

words, we must find the coefficients i , j , and k  that minimize the following sum: 

E z ix jy kl l l
D

    ( )2 . 

A local minimum for E  exists where 









E

i

E

j

E

k
   0 .  Differentiating with respect to 

i  yields: 

0 2    ( )z ix jy k xl l l l
D

. 

Separating the sums and rearranging gives: 

x z ix jx y kxl l l
DD

l l
D

l
D

    2 . 

Differentiating with respect to all three unknowns and using our sum shorthand notation gives 

the two dimensional linear least squares system: 
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3.5 Second and Third Order Systems 

The second order approximation function: 

f x y fx gxy hy ix jy k2
2 2( , )        

yields the system: 
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The third order approximation function: 

f x y ax bx y cxy dy fx gxy hy ix jy k3
3 2 2 3 2 2( , )            

yields the system: 
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Note the way the linear system is embedded in the quadratic system which is embedded in the 

cubic system.  We exploit this arrangement to solve singular systems in the next section. 

3.6 Solving Least Squares Systems 

3.6.1 Closed Form Solution for the Linear Problem 

The two dimensional linear system is small enough so that a closed form solution is tractable.  

If the determinant of the S (left hand) matrix is: 
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D S S S S S S S S S S S S
y x xy y x y x xy x y

            2 2 2 2
2 2 22  

then the solution is: 
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This solution requires 39 multiplications, 10 additions and 1 division.  Difficulties are presented 

by 
1

D
 term found in the solution for all three coefficients.  Some domains, a trivial example 

being a domain with a single data point, generate singular first order S  matrices and the 

determinant is zero.  Domains whose S  matrix is singular do not contain enough data points 

to uniquely determine all three polynomial coefficients.   

For example a domain whose data points all have identical x  coordinates would have difficulty 

generating a coefficient for the y  term in the approximating polynomial.  What is desired for 

such domains is for the solution procedure to deliver coefficients for which it has information 

and zero for the others.  In the pathological example of the single point domain, only k  would 

have a non-zero value:  the value of the dependent variable at that point.  The next section 

develops a solution method with the desired characteristics. 

3.6.2 Cholesky Factorization of Symmetric Positive Semidefinite Systems 

3.6.2.1 Symmetric Positive Definite Systems 

The Cholesky factorization for symmetric positive definite matrices is a variation of LU  

factorization that takes advantage of symmetry to reduce the operation count by a factor of 

two, since U LT .  The method uses O
n

( )
3

6
 multiplications and additions. 

Since the matrix is positive, square roots can be used to calculate the diagonal elements of L .  

The square roots can be avoided by a variation of the technique that leads to a factorization of 
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the form LDLT  where L  is a lower triangular matrix with unit diagonal elements and D  is a 

diagonal matrix 

The systems of Sections 3.4 and 3.5 are called the normal equations for a least squares problem.  

The matrices of normal equations are known to be positive but are not necessarily definite.  As 

described previously, they can be singular which results in zero pivots.  Zero pivots lead to 

problems for factorization schemes that are usually solved by full or partial pivoting.  A 

permutation is applied to the system before each row reduction that hopefully can bring a non-

zero element to the pivot position. 

Pivoting is only successful in solving matrices that are non-singular.  Pushing a near zero pivot 

further down into the matrix only delays things unless the matrix is non-singular.  For singular 

matrices a zero pivot is eventually encountered that a permutation cannot remove.  The singular 

value decomposition6 is a method for dealing with singular matrices.   

3.6.2.2 The Singular Value Decomposition 

The singular value decomposition works on any matrix but, we limit the discussion to its use 

with symmetric positive semidefinite matrices.  For such a matrix, S , a singular value 

decomposition factors it into the form Q QT  where Q  has as its columns the eigenvectors 

of S  and   is a diagonal matrix with the eigenvalues of S  along its diagonal. Q  is also 

orthonormal, Q Q IT  , so solution of the least squares system, Sx b  after decomposition is 

x Q Q b1 T  . 

Of course since   can have zero elements along the diagonal and therefore be singular, 1  

can fail to exist.  Neglecting zero diagonal elements of , 1  is simply the matrix formed by 

replacing each diagonal element of   with its multiplicative inverse.  The trick for handling 

zero or near zero diagonal elements of   is to just replace them with zero in1 .  The 

solution resulting from this replacement is provably of minimum length5. 
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Of the many polynomials that can approximate the underdetermined system, we want the one 

with the smallest coefficients, and the minimum length supplies just that.  Also, zeroed 

coefficients of the minimum length solution are the ones for which the system contains the 

least information, exactly what we want. 

3.6.2.3 Cholesky Factorization Extended to Semidefinite Systems 

The singular value decomposition is significantly more complex than the Cholesky 

factorization and even though in most cases its asymptotic complexity is equivalent, its 

overhead makes it significantly slower for small matrices such as ours.  For this reason, we 

develop a procedure to extend the Cholesky factorization to positive semidefinite systems by 

applying the singularity removal technique of the singular value decomposition.   

The Cholesky method starts at the upper left of a matrix and proceeds down the diagonal with 

a progressively wider wavefront.  The procedure is done in place with the entries below the 

diagonal replaced with L , the diagonal entries replaced with D , and the entries above the 

diagonal replaced with DLT . 

For i j , s s s sij ij ik kj
k i

  

 . 

For i j , s
s

sij

ji

jj

 . 

For i j , s s s sii ii ij ji
j i

  

 . 

Once the S  matrix has been factored, the system Sx b  is solved by forward ( i  increasing), 

b b s bi i ij j
j i

 

  

and then backward ( i  decreasing), 
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substitution, with in place replacement of b . 

Since S  is positive semidefinite, we know that both its eigenvalues and pivots are either 

positive or zero.  Additionally, if an eigenvalue is zero, its corresponding pivot is zero.  Since 

the Cholesky method delivers the pivots of S  into the diagonal of the solution, the sii  are 

constrained to be greater than or equal to zero.  Our first modification of the Cholesky method 

is to replace a diagonal element, sii , with zero if its factored value is less than a stability parameter  : 

s sii ii   0 . 

Further, just as in the singular value decomposition, we replace anything divided by a zero sii  

with zero.  Now for some justification. 

In S , each column is contributed by a particular polynomial coefficient and each row is 

contributed by differentiation with respect to a particular coefficient.  If the domain does not 

have enough points to uniquely define a coefficient, we would like for the system to behave as 

if we had not included its polynomial term in the first place.  Ideally, the system would reduce 

to the principle minor of the singular value and become positive definite. 

Let’s first look at S .  In Section 3.5 we defined the rows and columns S  in a particular manner 

so that lower order systems would always be embedded in those of higher order.  Since the 

Cholesky method starts at the upper left and works down and to the right, if there is a singular 

coefficient, it is always of the highest possible order.  For example, if all points of a domain 

have only two different y  coordinates, it is not possible to uniquely determine coefficients for 

y 0 , y1 , and y 2 .  By the arrangement of the Cholesky system, we assure that the singular value 

arises in the y 2  column of the Cholesky matrix. 
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Next, we show that a singular value does not influence the values of any entries in S  that are 

not on the row or column of the singular value.  Figure 3.1 shows an example quadratic system 

whose y 2  term is singular or nearly so.  When solving the system,  the diagonal element 

corresponding to y 2 , labeled 0 , is less than   and is set to zero.  The elements 0  are forced 

to zero since all elements below the diagonal are divided by the diagonal element of their 

column.  The elements 0  could be set to zero by reflecting 0  across the diagonal but it is 

not necessary to do this directly.  Any use of an above the diagonal element in the equations for 

above the diagonal or on the diagonal elements is multiplied with its transpose image across the 

diagonal.  Since the 0  elements are the reflections of the 0  elements, the 0  elements are 

virtual zeros. 
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Figure 3.1 
Zero Propagation 

When forward substituting, the mixture elements sij  are those elements of S  below the 

diagonal since i j .  These are the 0  elements.  When backward substituting, the mixture 

elements are the 0 .  Once again these are virtual zeros, because the only use of these 

elements is in the calculation of the coefficient of y 2 .  But this coefficient is divided by its 

diagonal element, resulting in zero.  Since the coefficient of y 2  is zero and solution for the 

other coefficients are not effected by the presence of the y 2  entries in the system, it is as if 

they do not exist.  The solution is the same as if we had not initially included the y 2  moments 

in the system! 
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3.6.2.4 Examples 

The significance of the previous result is difficult to appreciate without some examples.  Figure 

3.2 shows four sample domains.  Domains b and c are second order singular and a, and d are 

not.  In the following experiments the forcing function 

 z y x y xy x     100 22 2  

is placed over each domain.  The name forcing function indicates that it is the source of the 

forcing moments.  It is simply the data generation function for our example domains.  Since 

the coordinate of the upper left corner point of each domain is ( , )0 0 , a value of 100 for the 

constant term of the forcing function assures that it remains positive over all four of our 

sample domains.   

The second order two-dimensional normal equations, Sx b , for the given forcing function 

over domain a are: 
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Note that the natural moments populate S  and the forcing moments populate b .  The 

Cholesky factorization and solution for domain a are: 
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Figure 3.2 
Sample Domains 
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Note the correct recovery of the coefficients of the forcing function in b .  Domain a is the 

smallest possible second order non-singular domain.  The solution to domain b, also having six 

elements is: 
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Note the singularity developing in the y 2  column of S .  This is due to b having insufficient 

extent in the y  direction to uniquely determine all three y  coefficients. 

The solution for domain c: 
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shows a similar result for a larger domain of the same shape.  For both of these examples, the 

y  as well as the y 2  coefficient turned out to be zero.  This is due to the forcing function over 

the domain, not the geometry of the domain itself.   

Domain d adds another point to c and removes the singularity: 
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All examples thus far have been solved with a stability parameter,  , of 
S

32
, where S  is the 

upper left element of S .  If we reduce   to 
S

8
, the solution for domain d is: 
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As can be seen, the y 2  term of the polynomial has been forced to zero by the singular value 

correction procedure.  The solution is just the best least squares coefficients for the five 

remaining polynomial terms.  What is especially interesting is how the y 2  term has the smallest 

pivot and is the first to be eliminated by raising the value of  .  This is exactly the intuitive 

result that one would expect from domain d.  Looking again at the  
S

32
 solution to d, we 

can see that the order in which coefficients are zeroed as the stability factor increases is: 
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y y xy x x2 2    .  The constant term cannot be eliminated as its diagonal element of 

S  remains unchanged by the procedure 

3.7  Error Function 

In addition to solving for the least squares polynomial approximation for a domain, we need to 

solve for the error between the approximating polynomial and the actual data values.  The sum 

of the squares of the differences between the data points and the approximating polynomial is: 

E z ix jy kl l l
D

1
2    ( ) . 

Expanding the sum and using our shorthand sum notation, the total squared error for the two 

dimensional linear approximation is: 

E S k S jkS j S ikS ijS i S kS jS iS
z y y x xy z z yz xz1

2 2 2
2 2 22 2 2 2         ( ) . 

The error for the quadratic model is: 
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and the error for the cubic model is: 
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3.8 Space/Precision Issues 

Since the domain management methods developed here are designed for use in extracting a 

piecewise smooth approximation of a set of data, all domains have a common coordinate 

reference.  For this reason, domains that are far from the origin can have quite large moments 

even if the domain itself is quite small.  For example, in the third order system the natural 

moments contain powers of x  and y  up to six.  For a single point domain at 100 100,  its 

largest natural moments have a magnitude of 1006 . 

For effective use of cubic systems, 64 bit integers must be used to keep the moment sums.  

The maximum domain coordinates used should be less than 1000.  With 39 moments per 

domain, 312 bytes of memory must be available for each domain in use.  For good 

convergence of the Cholesky factorization, 80 bit floating point (64 bit mantissa) precision is 

necessary. 

For second order systems, at least double precision floating numbers (48 bit mantissa) are 

necessary to maintain moment sums.  Double precision calculations are necessary for reliable 

Cholesky convergence.  The 23 second order moments need 184 bytes of memory per domain. 

First order moments can generally be kept in 32 bit integers.  Double precision should still be 

used for Cholesky convergence.  The memory requirement for the 10 moments is 40 bytes per 

domain. 
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Thus far, the method has been tested on zero origin global domains up to 352x288 data points 

with ranges of 0 255.  The range should be extendible to 32 bits before it becomes the limiting 

factor.  Further increases in precision may be necessary for larger domains or ranges. 

3.9 Summary 

We developed moment operators for use in finding least squares piecewise-polynomial 

approximations of multidimensional data.  We introduced terminology for describing the 

components of multidimensional least squares normal equations.  The natural moment matrix 

is comprised of moments of the independent variables.  The forcing moment matrix is 

comprised of moments of both the independent and dependent variables.  We developed 

complete natural moment matrices, forcing moment matrices and least squares error functions 

for first, second, and third order two-dimensional polynomials.  We extended the Cholesky 

factorization of symmetric positive definite matrices to symmetric positive semidefinite 

matrices.  We used the modified Cholesky factorization to determine the polynomial 

coefficients supported by a domain. 
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4. Domain Extraction 

4.1 Motivation 

For Piecewise Smooth Coding to be useful, an efficient method for extracting an optimal set of 

domains and pixel intensity functions from an original image must be available.  If we refer to a 

proposed set of domains and functions as an image model, to determine optimality an 

extraction procedure must balance two different measures.  First, how well does the model 

approximate the original image?  Second, how much does it cost to code the model? 

To determine how well a proposed model approximates the original image we must measure 

the error between the image rendered from the model and the original.  Since any extraction 

procedure must accept or reject many different proposals in the process of obtaining a near 

optimal one, the error comparison operation must be quite fast.  The methods of Chapter 3 are 

one way to achieve O( )1  error comparison. 

The final arbiter of a model’s cost is the number of bits necessary to code it.  Unfortunately, 

since a great number of cost measurements must be made by any extraction procedure, it is not 

tractable to completely code each proposed model to obtain its cost.  However, the exact cost 

of a model is generally not needed to obtain an approximately optimal solution.  If an 

approximate functional dependence of the total model cost on each domain and intensity 

function element is known, the function can be used in the extraction procedure. 

An extraction procedure must balance the two competing requirements of model fidelity and 

model code cost.  It certainly is not entirely obvious how this can be done, so it is useful to 

examine the literature for prior work. 

4.2 Background 

The closest area of study to domain extraction is image segmentation.  Segmentation has been 

described extensively in the literature2,3 and is similar to domain extraction in that an image is 

partitioned into regions or segments that align (somewhat) with objects in the image.  A wide 

variety of methods have been documented.  They generally fall into four categories:  histogram 
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clustering, region growing, split and merge, and boundary finding and linking techniques.  One 

drawback of most reported techniques is that algorithm parameters must be adjusted for each 

segmented image for reasonable results to be achieved.  More recently, several schemes have 

been proposed that are based upon global optimization techniques and attempt to remove this 

parameter adjustment problem. 

Perhaps the first reported use of global optimization techniques was by Gemen and Gemen7 

who used a Bayesian model and simulated annealing for image restoration.  LeClerc8 used 

Minimum Descriptive Length arguments to arrive at a similar model formulation and used 

continuation functions as his optimization strategy.  While potentially highly parallel, these first 

descriptions are not directly applicable to segmentation of arbitrary images since the techniques 

partition an image into a set of predefined equivalence classes.  Prior knowledge of potential 

equivalence classes is only available in certain carefully constructed problem instances. 

Marques, Gasull, Reed and Kunt9 show a boundary relaxation technique that is a descendent of 

the approach of Gemen and Gemen.  While this strategy is useful for optimizing the 

boundaries of an existing partition, it cannot be easily extended to find the optimal number of 

regions in a segmentation.  Sheinvald, Dom and Niblack10 propose a greedy strategy for region 

growing.  Minimum Descriptive Length arguments are used to derive a cost function that 

drives the region merging process. 

Kwon and Chellappa11 describe an interesting technique for region growing that uses separate 

methods to grow smooth and textured regions.  The smooth regions that overlap at least 50% 

with a textured region are classified as textured.  Smooth regions are approximated by second 

order polynomials and are grown by merging adjacent regions that cause an increase in 

approximation error below a certain threshold.  This is a recent result and it shows how the use 

of global optimization techniques for image segmentation is still not widespread.  Their 

experimental results testify to the difficulty of controlling the growth of appropriate second 

order regions using simple threshold merge operations. 

Another method that deserves particular analysis is the variable order surface fitting algorithm 

of Besl and Jain12.  It is the most elaborate of previously reported methods that model regions 
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with smooth intensity functions.  The method uses local image characteristics to classify the 

intensity surface over each pixel.  A subsequent step maps the local surfaces into larger surfaces 

while attempting to minimize the surface order.  Because this method essentially takes local 

derivatives, its performance degrades rapidly in the presence of noise.  It was developed to 

segment low-noise images obtained from a distance measuring apparatus. 

4.3 Greedy Domain Growing 

This Chapter embodies a greedy domain growing algorithm for image partitioning.  It is similar 

to the method of Sheinvald10 in that it uses an underlying image model that contains both bulk 

and boundary components.  It is more general in the sense that the exact form of the image 

model is not predetermined.  In keeping with the terminology of other chapters, we refer to a 

region as a domain and to a segmentation as a partition.   

An initial partition is formed by placing each pixel into its own domain.  Domains are grown by 

merging  with adjacent domains.  Each domain has an identity.  The identity of a domain is simply 

the data structure assigned to it by the algorithm.  After each merge the smaller of the two 

merged domains loses its identity.   

The greedy order is determined by an associated cost function.  The algorithm is independent of 

the exact form of this cost function.  The identity of each domain holds private data that is 

managed by the cost function’s image model.  The bulk component of the image model is consulted 

via a callback routine when two domains are merged.  A consultation allows the image model to 

update itself as the partition changes. 

Additionally, the boundary component of the image model is consulted when traversing the 

partition boundaries.  Each traversal yields a transient model of the boundary separating adjacent 

pairs of domains.  The identities of two domains and the transient model of their boundary are 

made available as parameters to the cost function.  The cost function determines the merge 

cost of two domains and thereby the overall merge order. 
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4.4 Implementation 

4.4.1 Concepts 

There are three key areas that must be addressed in any efficient implementation of a domain 

growing algorithm:  membership, topology, and priority.   If a domain is defined as a set, the 

members of the set are its pixels.  Topology refers to connectedness.  For instance, given a 

pixel, what are its neighbor pixels?  Given a domain, what are its neighbor domains and pixels?  

Priority determines the order in which domains are merged.  

A set contains a list of its members and each member knows its set.  Each domain identity 

includes a set of its pixels.  Since a domain is a set, a pixel can be a member of only one domain.  

Each pixel also knows its own location in a field.  The field’s function is to provide direct access 

to a pixel’s near neighbors and is implemented as a two dimensional array. 

Whereas pixel topology is easily embodied in the field concept, deduction of domain topology 

requires a more powerful technique.  The traveler can traverse the outer boundary of a home 

domain.  A boundary traversal enumerates all pixel pairs that are on either side of the imaginary 

boundary line that separates a domain from its neighbors. 

An accumulator is a fixed size set with an age tag  for each of its entries. An accumulator’s global 

age tag  replaces an entry’s age tag when that entry is initially added or when a current entry is 

updated.  If an accumulator’s global age tag is incremented, entries updated or added subsequent 

to the increment are younger than those added or updated prior to the increment. Accumulator 

entries cannot be older than a maximum age.  Entries older than their accumulator’s maximum 

age are invalid.  An accumulator has a current size that is less than its maximum.  An accumulator 

is emptied simply by incrementing its maximum age and resetting its current size.  An 

accumulator’s contents can be enumerated.  All accumulator operations except for enumeration 

are O( )1 .  Accumulator enumeration is O N( )  where N  is the current size. 

Each domain identity contains an accumulator location tag that locates its accumulator entry if it 

has one.  Because of this, a domain can have only one associated accumulator entry at a time.  

The accumulator tag makes accumulator membership query an O( )1  operation.  A traveler 
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accumulates neighboring domains (adds them to an accumulator) as it traverses the home 

domain's boundary.  Each accumulator entry also contains a private data structure that holds 

the transient boundary model of its associated domain.  As discussed previously this transient 

model is managed by consultation with the boundary component of the image model. 

The traveler and associated accumulator concepts only apply to the outer boundary of a 

domain.  A complete topological description of the neighborhood of a domain must also 

include interior neighbors or holes.  Each domain identity also contains a set of its holes  Every 

domain is either in the global domain set or in another domain's hole set. 

If north on the image plane is defined as pointing toward the upper part of the image, one of a 

domain’s uppermost pixels is designated its northernmost.  A domain may have more than one 

pixel of the same maximum latitude.  Any one of these pixels can be designated northernmost.  

Since the northernmost pixel is used as an anchor point when traversing the boundary of the 

domain, the key requirement is that no pixel of a domain may be further north than its northernmost. 

The complete topological description of a domain partition is quite large.  A mechanism is 

needed for focusing attention on areas that contain adjacent domains that are similar via some 

cost measure.  A priority heap13 is used to hold one entry for each domain in the partition.  Each 

heap entry contains the best neighboring merge candidate of its corresponding domain.  The 

head of the heap therefore provides immediate access to the most promising pair of merge 

candidates. 

Maintenance of the heap as domains are merged is non-trivial.  To aid in this function, each 

domain identity contains a heap tag that can directly access its corresponding heap entry.  After 

two domains are merged, the local boundary is traversed and the heap entries for effected 

neighbors are updated.  This may necessitate the movement of the associated heap entries.  

The heap has special operations that facilitate the updating and possible movement of heap 

elements and the extraction of members not at the heap’s head.  In Section 4.4.2.1 we describe 

exactly how these special operations are used. 
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4.4.2 Algorithms 

The domain growing process proceeds in a greedy fashion, the order being determined by an 

associated cost function.  Initial domains are formed by placing each pixel in its own domain.  

Optionally, a simpler seed growing strategy can be used before use of the greedy merge 

procedure.  The priority heap is initialized with one entry for each domain.  The following 

sections detail each operation of the algorithm.  The algorithm is summarized in Figure 4.3 at 

the end of the detail descriptions. 

4.4.2.1 Heap Maintenance 

A priority heap is used to maintain an ordering of possible merge candidates.  In addition to 

the standard operations of insert, peek head, and extract head, the heap object contains two 

additional operations to update heap entries of neighboring domains when two domains are 

merged.  A generalized extract method is used to remove the heap entry of the domain that is 

merged to the domain whose heap entry is at the head of the heap.  The adjust method is used 

to move heap entries for those domains neighboring two merged domains whose best merge 

cost may have been effected by the merger.  The update and generalized extract methods are 

both O N(log( )) . 

Each domain identity of the partition contains a tag that is an index into the greedy merge heap 

for the entry associated with the domain.  When a heap entry for a domain needs to be 

adjusted, the tag locates the entry. 

The key operation performed by most heap methods is swapping of heap entries.  The swap 

method knows the form of heap entries and updates their heap tags as their associated heap 

entries move.  Heap entries are kept small to facilitate movement. 

4.4.2.2 Traveling 

Figure 4.1 shows an example counterclockwise boundary traversal. The home domain’s 

northernmost pixel anchors the boundary traversal.  The boundary separator between the 

home domain’s northernmost pixel and the pixel immediately to its north is a traversal’s 
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starting point.  For a counterclockwise traversal, the initial direction of travel is west, and east 

for a clockwise traversal.   

The key traveling operation is  next_move.  Each next_move operation moves to the next 

separator location on the home domain’s periphery.  If pixels are thought of as squares, a 

separator is defined as an imaginary line that separates an edge of a pixel from the opposing 

edge of its neighbor.  A single pixel can be surrounded by at most four separators, and at most 

three if the domain containing the pixel contains more than one pixel. 

The next_move operation follows the boundary as one would follow as maze.  When traveling 

counterclockwise an attempt to turn right is first made.  If a right turn leaves the boundary, the 

straight ahead direction is checked.  Finally, if proceeding straight ahead leaves the boundary, a 

left turn is made.  A right turn is possible if both the pixel just ahead of the anchor pixel and 

the pixel just ahead and to the right are in the same domain as the anchor pixel.  Proceeding 

straight ahead is possible only if the pixel just ahead is in the same domain as the anchor pixel.  

4 sample domains, 39
separators in path

Domains 3 and 4 are
not holes of domain 2.

Note that all domain
pixels are edge
connected to another
pixel in the same
domain. The single
pixel of domain 4 is
not connected to the
pixel of domain 1 at
its northwest corner.

12212111

11222111

11224211

11122221

11233221

11232211

11222111

11111111

 

Figure 4.1 
Traveling a Domain Boundary  
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A left turn takes place if neither of these two conditions are met..  A clockwise traversal is 

made by reversing the roles of left and right in the previous discussion. 

4.4.2.3 Hole Discovery 

Figure 4.2 is an example of hole discovery.  Hole discovery is the process of determining which 

neighboring pixels become holes when two domains are merged.  The key idea is that a domain 

touched when traversing the outer boundary of either domain before their merger and not 

touched when traversing the outer boundary of the combined domain, must have become a 

hole of the combined domain.   

As discussed previously, an accumulator is a fixed size set which is sized to hold the maximum 

number of possible domain neighbors (We discuss this maximum in Section 4.6.).  As 

neighboring domains are first encountered during a traversal, they are added to an accumulator.  

Subsequent encounters update previously existing accumulator entries.  Each traversal has a 

unique identifier or age.  Accumulator entries added or updated during a traversal have that 

traversal’s age  

When merging
domain 1 to domain
2, domain 3 becomes
a hole.The effected
periphery is
highlighted.

The new domain
retains the label 1.
Domains 5, 6, 8, 9,
10, 11, 12  and 13
may need to have
their heap entries
adjusted.

Domain 7 is not on
the hole list of
domain 1.

99999101010

111112211

155513211

187613211

113131313211

111112211

1212121212121211

99999101010

 

Figure 4.2 
Hole Discovery 
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Holes are discovered by traversing the boundaries of the domains being merged and 

accumulating neighbors that are on either boundary.  After the domains are merged, the 

accumulator age is incremented and neighbors on the combined boundary are accumulated.  

Any neighboring domains encountered in the post-merger boundary traversal have their 

corresponding accumulator entries updated to the age of the post-merger traversal. 

Following the post-merger boundary traversal, the accumulator is enumerated.  Each entry in 

the accumulator (there is one for each domain encountered in any of the three boundary 

traversals) is retrieved and its age is examined.  Any entries older than the post-merger traversal 

are new holes. 

4.4.2.4 Domain Tree Maintenance 

When two domains are merged, holes in the original domains and those created by the merger 

must have a new best neighbor search performed.  Each domain’s hole set makes this process 

efficient.  Each domain is either in the hole set of another domain or in the set of domains that 

are not interior to any other domain. 

Initially, every domain is in the global domain set.  As domains are merged and holes are 

formed, both new and old holes must be moved to the appropriate parent set.  Holes that exist 

before a merge remain holes.  The holes of the domain being subsumed are moved to the 

remaining domain’s hole set.  Newly discovered holes are added to the remaining domain’s 

hole set. 

If the domain being subsumed is in a hole set and the subsuming domain is not, the subsuming 

domain is removed from the global set and placed in the set of the subsumed domain.  This 

can occur when the subsuming domain is completely surrounded by another larger domain but 

it does not actually touch the surrounding domain.  This subsumed domain can be completely 

surrounded by intervening holes of the larger surrounding domain.  If the domain being 

subsumed is the surrounding or parent domain of the subsuming domain, the new combined 

domain is placed in the hole set of the subsumed domain. 
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Build a heap by inserting one entry for each domain in a seed partition. 

Loop until the desired number of domains is obtained: 

Remove the head of the heap. 

Extract its neighbor's heap entry. 

Merge the two domains (smaller to the larger): 

If merging a parent into one of its holes: 

Place the resulting domain into the set of the parent. 

If merging a hole into an interior global domain: 

Place the resulting domain into the set of the hole. 

Perform the merge: 

Travel the neighbor's boundary and accumulate. 

Travel the head's boundary and accumulate. 

Advance the accumulator's age. 

Call the merge callback routine. 

Merge the pixel sets (smaller domain’s tags change). 

Add the subsumed domain's holes to the combined domain's hole list. 

Travel the combined boundary and accumulate. 

Enumerate the accumulator: 

If an entry is young (on the combined boundary): 

Find the cost of merging the domain with the new combined domain. 

Save as the best cost if better than the current best cost. 

If the entry's heap entry points to either original domain: 

Find the entry's best neighbor. 

Update the entry's heap entry with best neighbor information. 

Or for older entries (not on the combined boundary): 

Move their domain to the combined domain's hole list. 

Insert an entry in the heap for the combined domain using the best cost. 

For each hole of the combined domain: 

Find its best neighbor and update its heap entry. 

End of loop 
Figure 4.3 

Greedy Domain Extraction Algorithm 
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4.5 Proof of Correctness 

4.5.1 Definitions 

A heap entry contains references to a pair of adjacent domains.  A pair of adjacent domain 

references is a boundary.  An entry also contains the cost of merger of its domain pair.  The more 

positive the cost associated with the merger of two domains, the more favorable the impact on 

the global cost function if the two domains are merged.  The most positive entry is always at 

the head of the heap if the greedy order is maintained.  

A valid heap entry has the following properties: 

1. The boundary to which it refers is part of its associated domain’s outer boundary. 
2. The neighbor to which it refers has its own identity (It has not been merged with 

another domain) and is an actual neighbor of the heap entry’s associated domain. 
3. The cost of merger in the entry is the correct cost of merger with the indicated 

neighbor. 

A boundary between two adjacent domains is covered if: 

1. Neither domain is a hole of the other and 
2. Either of the adjacent domains’ heap entries contains the boundary, or at least one 

of the domains’ heap entries contains a boundary that has a more positive cost. 

or: 

1. One domain is a hole of the other and 
2. The hole’s heap entry either contains the boundary or contains a boundary that has 

a more positive cost. 

4.5.2 Overview 

We first prove that a heap entry persists for each domain and that all the boundary of the 

partition remains covered by a heap entry.  We then prove that all heap entries remain valid and 

that the best merge boundary is always in the heap.  Finally, we prove that the best merge 

boundary is at the head of the heap. 

4.5.3 Details 

Lemma 1.  Every domain in the partition has a corresponding merge heap entry. 
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The proof is by induction on the number of merge operations.  By definition, when the heap is 

built, every domain has a corresponding heap entry.  When two domains are merged, their 

corresponding heap entries are extracted.  A new entry is added to maintain the invariant. 

Lemma 2.  All boundaries in the partition are covered by an entry in the merge heap. 

The proof is by induction on the number of merges.  Certainly, every boundary is covered 

initially.  Since each entry in the heap contains the best merge candidate for its associated 

domain, every portion of its outer boundary is covered.  Since all of the outer boundary of 

every domain in the partition is covered, every boundary in the partition is covered. 

The only boundary sections that are effected by a merge are those that touch the merged domains.  

These sections are those on the outer boundary of the merged domain and those on the outer 

boundaries of the holes of the merged domain that touch the merged domain.  The outer 

boundary of the merged domain is covered by the new entry inserted in the heap after the 

merge.  Since the heap entries for each hole of the combined domain are adjusted after the 

merge, the hole boundaries remain covered. 

Lemma 3.   The boundary with the most positive cost in the partition is in the heap.   

The proof is by contradiction.  Suppose that the best boundary were not in the heap.  By 

Lemmas 1 and 2 every domain in the partition has a corresponding heap entry and all 

boundaries are covered by entries in the heap.  If the boundary is between two domains that 

are not holes of one another, at least one of the adjacent domains’ heap entries must refer to a 

boundary with a more positive cost.  Since this boundary would have a more positive cost, and 

is in the heap, the best boundary must be in the heap.  If the boundary is between a hole and its 

parent, the hole’s heap entry must either contain the parent boundary or a boundary that has a 

more positive cost.  Again, a contradiction. 

Lemma 4.  All entries in the heap remain valid. 
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The proof is by induction on the number of merge operations.  If after N merges the heap 

contains all valid entries, it does so after N+1 merges: 

 The only entries that could be effected by a merger are those associated with 
domains that abut either to the interior or to the exterior the two merged domains. 

 Any heap entry for a domain that touches the combined outer boundary and 
contains as its neighbor  member either of the two prior to combination domains is 
adjusted after the merge operation. 

 The heap entries for all holes of the combined domain are adjusted after the 
merger and therefore remain valid. 

Lemma 5.  The head of the heap contains the merge entry with the most positive cost. 

By lemma 3 the most positive cost merge entry is in the heap.  By definition of the operations 

of insert, extract head, extract, and adjust, the head of the heap contains the entry with the 

most positive cost. 

Theorem 1.  Domains are merged in the proper greedy order. 

The proof is by construction.  The merge heap remains valid by Lemma 5.  The head of the 

heap contains the best merge candidate by Lemma 4.  Every boundary in the partition remains 

covered by Lemmas 1, 2, and 3. 

4.6 Algorithmic Complexity 

The operations performed during a merge fall into four categories: set tag maintenance, heap 

maintenance, boundary traversal, and external operations performed by the boundary traversal, 

domain merger, and cost function callback routines.  The domain merger routine is called once 

for every merger.  The boundary traversal callback routine is called once for every boundary 

separator along the external and internal periphery of the merged domains.  The cost function 

routine is called once for every domain touching the same periphery.  For this analysis we 

assume that all three callback routines are O( )1 .  This requirement calls for careful 

construction of the domain model. 
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Given an image  , let N    designate the number of its pixels.  If T  is the target number 

of domains in a partition of  , then the number of merges necessary to reach T  is M .  If  

T N , then M  N  as T  0 . 

Since when domains are merged, the smaller domain is merged to the larger, the total number 

of membership tag changes for N merges is O N N( log ) 13.  Additionally, each merger results 

in a boundary traversal and potential cost function, O( )1 , and heap operations, O N(log ) , for 

each adjacent domain.  Unfortunately, the number of potential boundary locations and the 

number of neighboring domains encountered during a traversal is O N( ) .  For N merges, the 

overall complexity is: 

O N N O N O N O O N O N O N N( log ) ( ) ( ( ) ( ( ) (log )) ( )) ( log )     1 2 . 

where the complexity terms are for membership tag changes, boundary length traversed 

(including boundary callbacks), bulk callbacks, and heap operations respectively. 

Although the length of the periphery of a domain is O N( ) , this bound is not often 

approached in practice.  Let B De ( )  designate the length of the external boundary of a 

domain, and B Dh ( )  designate the total boundary length of all the holes in a domain.  If the 

following restrictions are placed on the domains of  : 

Largely Convex 

   c D B D ce1 1: , ( )   

Largely Whole 

   c D B D ch2 2: , ( )   

Then the overall complexity reduces to: 

O N O N O N O N N N( ) ( ) (log ) ( log )     . 
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4.6.1 Dynamic Size Limiting 

The complexity bound can be reduced still further by placing a dynamic limit on the maximum 

domain size.  For instance, when a large number of domains remain in the partition, the 

maximum domain size can be kept smaller than when a small number of domains remain.  A 

convenient bound (from a complexity perspective) to place on the size of a domain is 

c
N

Z




2

2log

, where Z is the number of domains remaining. 

Dynamic size limiting divides the original problem into log ( )2 N  subproblems that can be 

summed thusly: 

O N
O

N
cT T

T

T

N ( )
(log ) ( )

log

2 2
21 2

0

12






   . 

The first term of the sum is the number of merges in the subproblem, the second term is the 

complexity of heap operations for each merge in the subproblem and the third term is the 

complexity of the boundary and neighboring domains for each merge in the subproblem.  

After taking N  outside and canceling terms, this reduces to: 

c
O N O

N
T

T

N

2 22
0

12






( ) (log )
log

. 

Since the sum is bounded by O N(log )2 , the overall complexity reduces to: 

O N N( log )2 . 

4.7 Summary 

We presented a new greedy domain growing algorithm for image model extraction.  The 

algorithm is independent of the exact image model which may contain both bulk and boundary 

components.  The model is updated via callback routines as the algorithm progresses. 

We initialized the algorithm by creating one domain for each image pixel.  We used a heap to 

maintain the greedy ordering and developed update and extraction methods to aid in heap 

maintenance.  We developed the boundary traveler and showed how local boundary 
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characteristics are re-measured after each domain merger.  We kept track of neighboring 

domains of a boundary traversal via a fixed size accumulator.  We showed how the  algorithm 

handles inclusions or holes which may form from the merger of two sibling domains or 

disappear via merger with a parent. 

We proved correct greedy order through the idea of boundary covering.  A complexity bound 

of O N N( log )2  was developed by dynamically increasing maximum domain size as domain 

count falls. 
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5. Domain Smoothing 

5.1 Motivation 

Once an image has been partitioned into a set of domains it is often desirable to refine the 

domain boundaries.  For example, the boundary may be somewhat irregular or “noisy” due to 

imperfections in the extraction procedure or noise in the underlying image.  An irregular 

boundary is quantitatively different from a smooth boundary in two ways.  It is longer and is 

more random.  Since the primary motivation of partitioning a digital image is most likely to be 

to simplify its description, both of these properties are undesirable in that they lengthen the 

description of the partition.  Irregular boundaries have another intangible property that makes 

them undesirable:  they are not “visually pleasing”.  With a proper smoothing procedure, one 

can both shorten the description and produce a more visually pleasing partition. 

Figure 5.1 
Irregular Boundary 

In Figure 5.1 the gray domain contains only 27 pixels, but the boundary between it and the 

white domain is 32 separators long.  In addition the boundary has little structure in that if one 

follows the boundary it is difficult to predict what direction it will next take using only 

information about what direction it has taken thus far.  Intuitively, the pixels labeled with 

White pixels define
domain 1.
Grey pixels define
domain 2

Lettered pixels may
be candidates for
reclassification.

C

A

D

EF

B
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letters seem to be the loci for much of the boundary’s length and irregularity.  For example, if 

pixels E and D were reclassified, as white and gray respectively, the boundary length would be 

reduced by four and become more regular.  The rest of this chapter develops a formal 

procedure for making such reclassifications. 

5.2 Background 

There is one body of significant work in boundary relaxation that originates with the Gibbs 

field paper of Gemen and Gemen7.  After introducing a so called edge process embedded in a 

Gibbs field, certain local boundary configurations or cliques were assigned a more favorable 

energy and this additional edge information was used to improve the results of a simulated 

annealing image restoration algorithm.  Variations of this technique have been used  for image 

segmentation via region growing and for boundary relaxation.  A recent example is that of 

Hussain and Reed14 who used the technique in a segmentation based image compression 

method. 

Another technique that has developed a significant following is the method of Snakes15.  In this 

method a tentative boundary, or Snake, is optimized by balancing an attraction to image 

features with an internal energy related to spline continuity.  It seems especially suited to 

interactive specification of image contours due to its sensitivity to the position of the initial 

tentative boundary. 

5.3 Boundary State Machine 

While previously reported methods are quite powerful, they seem somewhat ill-suited to the 

task of efficiently and autonomously smoothing domain boundaries.  If we seek to develop a 

fast deterministic procedure, we first might ask:  What is the asymptotic limit?  An obvious 

limitation is that each boundary pixel must be visited at least once.  If after one move is 

performed, the number of pixels revisited to determine the next desirable move is limited to a 

constant times the number of pixels just moved, the number of pixels moved must be counted.  

Defining B  to be the number of boundary pixels and M  to be the number of pixels moved, 

the lowest possible algorithmic complexity is: 
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O B M( ) . 

To achieve this limit the initial pixel search set must to limited to an integer multiple of the total 

boundary length.  One way to do this is with a state machine that traverses the boundary 

between domains. 

In a boundary traversal, we follow the boundary as one would follow a maze.  For every 

traversal there is a home domain.  At each pixel corner a direction decision is made:  either turn 

left, right, or continue straight.  The path traversed follows the boundary of the home domain 

without diverging.  We require that all home domains be connected so that a traversal is always 

closed.  That is, it always returns to the starting point without doubling back. 

A boundary separator is labeled with the event associated with the immediately preceding pixel 

corner.  For example, on Figure 5.1 starting at the boundary separator above pixel C and 

traveling in the counterclockwise direction, the first ten movements are:  rllrlrslsr.  The 

counterclockwise direction of travel is the default in the rest of the discussion, but using mirror 

symmetry simply interchange right and left when reversing direction.  

The last few turn decisions make up the machine’s state.  Using regular expression syntax, we 

can encode the state at the edge just below pixel E in Figure 5.1 as ls+lr.  Formalizing this 

procedure, the oldest event is written on the left and more recent events follow to the right.  In 

this example we have limited the state to 4 symbols, but we may expand that as necessary.  We 

now turn to the task of finding boundary states that can be used to perform smoothing. 

5.4 Rasterization 

While boundary length is a significant factor in measuring edge smoothness, it cannot account 

for all cases where a boundary may be considered irregular.  For example the pixel labeled A in 

Figure 5.1 is visually perceived as a “bump” on a diagonal line but moving it to domain one 

does not change the overall boundary length.  We now use a well known result from computer 

graphics16 to develop a more powerful smoothness measure: 
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The  resulting smoothed boundary should contain the smallest number of raster drawn lines and curves 
consistent with the underlying pixel intensity approximation function.  Raster lines and curves have the 
simple property that they shift at most one column at a time if the absolute value of their slope is greater 
than or equal to 1 and at most one row at a time otherwise. 

Using the raster concept combined with the boundary state machine developed previously, we 

can now make the following definitions: 

 A raster section is a contiguous set of movements that obeys the rules for raster 
drawn features. 

 A left straight section is a contiguous straight section immediately following a left turn. 
 A bump is a left turn following a left straight section. 
 A straight section is a non-null set of contiguous straight movements. 
 An odd turn section, abbreviated o, is contiguous odd number of alternating turns. 
 An left turn section, ol, is an odd turn section beginning with a left turn. 
 An right turn section, or, is an odd turn section beginning with a right turn. 
 A corner is a straight section followed by a left turn section followed by another 

straight section. 
 A dimple is the right turn bump. 
 An indent is the right turn corner. 
 A raster break occurs at the last turn of a bump, corner, dimple or indent. 

 
5.5 Boundary Cost Function 

Before developing some smoothing transformations, let’s first assign a cost to each 

transformation.  The cost function has two major components, the boundary term and the 

underlying model error term.  If we assume, that before smoothing, the boundary is generally 

in a favorable position relative to the underlying model, a smoothing transformation will most 

likely increase the error between the model and the source image.  We can think of a 

smoothing transformation as increasing the smoothness of the boundary at the expense of 

increasing the underlying model error. 

If the following definitions are made: 

 l  - The reduction in number of separators in the boundary 
 b  - The reduction in the number of raster breaks in the boundary 
 E  - The increase in error in the underlying intensity function model 
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the cost associated with a boundary transformation can be formulated thusly: 

   C E l b        ( ) , 

where , , and   are arbitrary constants.  In this formulation, l  and b  are positive for a 

decrease in boundary length or raster break count respectively.  Any decrease in boundary 

noise is played against any increase in model error.  The more positive the cost function, the 

more favorable the outcome of the boundary transformation. 

The raster criteria allows us to split the boundary component of the cost function into two 

terms, one proportional to the boundary length and another proportional to the number of 

raster breaks.  If a transformation is only made if it results in a positive C , the parameter   

controls the degree smoothing. 

5.6 Smoothing Transformations 

Given that reducing the number of boundary separators and raster breaks produces a smoother 

boundary, we can use certain states in our boundary follower as transformation markers.  As 

discussed previously, the signaling boundary features are the bump, corner, dimple and indent.  

If we assume that we traverse each boundary in both directions, it is only necessary to account 

for either the left or right handed features.  We arbitrarily choose left handed features for the 

rest of the discussion.  Using regular expression notation, Table 5.1 shows the bump and 

corner transformation markers. 

A transformation marker exists at every boundary locus where it is possible to move a 

connected set of pixels from one domain to another and reduce the number of separators or 

raster breaks.  If we assume a counterclockwise direction of travel and left handed marker 

features, the pixels to be moved, or move set, are those under the bump or inside the corner.  

Bump ls*l 
Corner sl(rl)*s 

Table 5.1 
Transformation Markers 
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Whether or not a pixel is moveable and other details of the move set are discussed in Sections 

5.9 and 5.10.  For now, we assume that only two domains are involved in each proposed 

transform and that all relevant pixels are moveable. 

5.6.1 Move Sets 

On Figure 5.1 the pixels labeled with letters are examples of single pixel move sets.  Move sets 

are not restricted to a single pixel.  The number of pixels in the move set is the product of the 

length and depth of the set.  The length of a bump move set is one plus the number of straight 

events in the bump marker.  The length of a corner move set is the number of left turns in the 

corner marker. 

The depth of a move set is dependent upon the boundary context (state) in which the 

transformation marker is embedded.  The context immediately preceding a transformation 

marker is called the prefix and that following is called the postfix.  The number of immediately 

contiguous straight events in the prefix and postfix determine the move set depth.  If the 

straight sections in the prefix and postfix are of different length, the shortest is the controlling 

straight length.  The depth of a move set is one plus the controlling straight length. 

Note that the corner transformation marker includes one straight section at each end.  This 

straight section is not counted in the corner depth calculation.   

Figure 5.2 shows bump and corner markers with length and depth of two.  The arrows indicate 

the direction of movement.  For example, if the arrows point to the right, the black pixels are 

to be moved from their current domain to the domain of the pixels just to their right.  Depth is 

counted parallel to the movement axis and length perpendicularly. 
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Figure 5.2 
Move Sets 

5.6.2 Limiting Move Depth 

Up to this point, we have placed no limit on the size of a transformation move set.  Intuitively, 

the larger the area of a transformation marker, the lower the likelihood of a favorable cost 

outcome for the transformation.  Since large area transformations are quite unlikely and 

computationally expensive to evaluate, it is convenient to limit the move set depth to keep the 

computation efficient. 

It is also desirable to be able to partially reduce a transformation marker.  A partial reduction is a 

reduction of the depth of the marker.  A depth reduction does not change a marker to one of a 

different type.  A reduced marker retains its type if its depth before  reduction was greater than 

one. 

Since a reduced marker can be completely transformed simply by making multiple passes 

through it, a natural simplification is to limit the move set depth to one.  Multiple passes peel 

away each transformation marker as layers of an onion.  On  

Figure 5.2 the pixels immediately adjacent to the arrows are members of the depth one, or 

string,  move sets. 

White pixels define
domain 1.
Non-white pixels
define domain 2

Example bump and
corner move sets are
shown in black.

Both move sets have
length and depth of 2.

Arrows show the
movement direction.
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5.7 Determining b  

A transformation marker’s prefix and postfix determine its reduction in raster breaks, b .  

Contexts that produce a non-zero b  are called active; others are inactive.  An active prefix’s 

mirror image is an active suffix.  An isolating prefix ends with s and an isolating postfix begins 

with s.  Markers of depth two or greater have both an isolating prefix and an isolating postfix 

and are obviously inactive. 

If a marker feature is deeper than one, its move set is isolated and b  resulting from a 

transformation is trivially zero.  If a marker feature has depth one, its transformation may or 

may not result in a reduction in the number of boundary raster breaks.  For example, a bump 

in the context srlsrls*lrslrs reduces to srls*lrs and there is no net change in b , but a bump in the 

context rsrls*lrsr reduces to rsr for a net reduction of two raster breaks.  Clearly, rsr is an 

example of an active prefix and srl is an example of an inactive prefix 

Active contexts generally must contain a mirror element of their transformation marker.  Odd 

turn sections are useful for absorbing the core of the corner transformation marker, which 

happens to be an odd turn section itself.  Any corner transformation that reduces the raster 

break count must have an opposing odd turn section as a prefix or postfix.  Odd turn sections 

as prefixes and postfixes are independent.  If both are present b  is twice as large as if only 

one were present. 

Marker Postfix b  
Bump rs+ols+ 1 
Bump rs*r 2 
Corner ors 1 
In either or both positions. 

Table 5.2 
Transformation Marker Active 

Postfixes 
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Bump transformations are more complex than corner transformations.  The opposite of a 

bump is a dimple.  A dimple must be a prefix or postfix for a dump transformation to reduce 

the number of raster breaks.  Unlike odd turn sections, bump prefixes and postfixes are not 

cumulative. b is identical if either one or both are present.  Additionally, a bump marker with 

the proper surrounding context may also include up to two indents.  The maximum b  

occurs when a bump marker has an indent prefix and dimple postfix or vice versa. 

5.8 Determining l  

It is desirable to define the boundary length, l , in a manner that associates a smaller length 

(lower cost) to a partially reduced transformation marker.  The conventional method of 

defining boundary length is to count separators, which is fine for bump transforms but 

inadequate for corner transforms.   

If pixel E on Figure 5.1 was moved from the gray to the white domain, the number of 

separators in the boundary would be reduced by two.  In this case, the separators to the east, 

north, and south of pixel E would be replaced by one to the west.  It is clear that for a bump 

transform involving only two domains, the number of separators is always reduced by two.   

Pixel A on Figure 5.1 is an example of the simplest corner transform move set.  If pixel A were 

transferred from the gray to the white domain, the separators to the north and west would be 

replaced by separators to the south and east.  This result generalizes to all corner 

transformations.  The net change in the number of boundary separators is zero.   
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5.8.1 Diagonal Separators 

The asymmetry in the conventional boundary length accounting for bump and corner 

transforms is due to an artificially high cost placed on diagonal lines.  A diagonal line in our 

four direction boundary consists of pairs of alternating turns.  In the context of the diagonal 

boundary on Figure 5.3 each turn pair has a perceived boundary length of 2 . 

Conceptually, if a pixel is corner embedded in only two domains we can replace the horizontal and 

vertical separators abutting it with a single diagonal separator.  If we approximate the 2  

perceived length of diagonal separator with 15. , we can retain integer weights simply by scaling 

all costs.  Our new conceptual boundary has two types of separators.  We designate diagonal 

separators with d and rectilinear separators with r. 

White pixels define
domain 1.
Non-white pixels
define domain 2

Separator count:  16.

Perceived boundary

length:  8 2 .

Diagonal separators
substituted at
embedded pixel sites.

 

Figure 5.3 
Perceived Boundary Length 
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5.8.2 Boundary Length Accounting 

Figure 5.4 shows example boundary length accounting for example corner and bump 

transformations.  Boundary length calculations are performed against the conceptual boundary 

previously defined.  Diagonal separators are assigned a weight of 1.5 and rectilinear separators 

are assigned a weight of 1. The example bump transformation shown is a tall bump.  A tall 

bump has straight events at the beginning of its postfix and at the end of its prefix.  A short 

bump is surrounded by right turns.  A mixed bump has a turn adjoining in the prefix and a 

straight event adjoining in the suffix or vice versa..  A tower bump has no central straight events.  

Table 5.3 summarizes l  for transformation marker types and subtypes.  Marker length is 

designated m in the table. 

  

Isolated move set
boundary transform
length accounting:

Corner:
2 2 3d r d 
5 0 4 5. .
l  1

Tall Bump:
2 2 2d r d 
50 30. .
l  2

 

Figure 5.4 
Boundary Length Accounting 
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5.9 Convergence 

Up to this point we have assumed that only two domains are involved in a boundary 

transformation.  If this requirement is met, it is clear that the algorithm must converge since 

after every transformation the conceptual boundary length is reduced.  When more than two 

domains abut a transformation, more analysis is needed. 

5.9.1 Interfering Domains 

When the pixels of a transformation marker touch more than two domains, at least one of the 

domains is an interfering domain.  The home domain is by definition a non-interfering domain, so 

interfering domains are always neighboring domains.   

On Figure 5.5, the gray domain is the home domain.  Domains C and D are receiving domains.  

A receiving domain is the domain to which moved pixels are transferred. Every transformation 

has one home and one receiving domain.  The receiving domain must touch every pixel of a 

move set in the direction of transfer.   

Domains A, B, and E are interfering domains.  Domain B causes splitting interference.  Its 

presence splits the destination of the move set into two domains.  This has an effect on domain 

boundary accounting but it is precluded in the present algorithm simply because it increases the 

complexity of domain management.  It is possible to account for the presence of splitting 

interference in boundary convergence accounting, but we do not do so.   

Marker Type Separator Mutations l  
Bump Shallow ( )m r d mr  2 2  1 
Bump Mixed ( ) ( )m r d m r d    1 2 1  1.5 
Bump Tall mr d m r d   2 2 2( )  2.0 
Bump Tower 3r r  2.0 
Corner All md r m d  2 1( )  0.5 

Table 5.3 
Transformation Boundary Length Changes 
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Domain E is an opposition interfering domain.  Opposition interference is indicated when a one 

of the pixels of a corner transformation move set is not corner embedded and a conceptual 

diagonal separator cannot be formed.  Like splitting interference, opposition interference can 

be accounted for in l  calculations, but is precluded in the present algorithm.  The primed 

pixels in Figure 5.5 are the opposition set of the black corner move set.  The opposition set of a 

corner transformation marker must lie in a single domain or the transformation is not 

performed.  

5.9.2 Subtractive Interference 

Domain A is a subtractive interfering domain.  Its presence decreases the amount of boundary 

smoothing produced by the transformation.  A bump transformation marker can have a 

subtractive interfering domain at each of its ends.  A subtractive interfering domain reduces the 

l  of a marker end to zero.  We have handled splitting and opposition interference by 

precluding moves where they occur.  We will not preclude moves with subtractive interference, 

however, and we must take care to assure that it does not effect convergence. 

Home domain in
gray.  Move sets in
black.  Opposition
primed.
Domains A, B and E
are interfering.

Disallowed Bump
transformation.
Splitting interference.

Disallowed Corner
transformation.
Opposition
interference.
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Figure 5.5 
Interfering Domains 
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Previously, we proved that when all transformations were non-interfering, the algorithm 

converged to a fixed point.  The key to the proof was a requirement that l  be negative for all 

transformations.  We relax that requirement for transformations with subtractive interference. 

l  for such transformations must be non-positive.  However, the requirement for E  is 

tightened.  When l  is zero, E  must be negative. 

Since at any given total boundary length transformations that leave the boundary length 

unchanged must reduce the model error, the algorithm is guaranteed to converge at any total 

boundary length.  Since no transformation is allowed to increase the boundary length, the 

algorithm must converge at the smallest attained boundary. 

5.9.3 Summary of Convergence Requirements 

 Transformations with splitting interference are disallowed. 
 Transformations with opposition interference are disallowed. 
 Transformations with subtractive interference must have negative E  

5.10 Correctness 

Before smoothing, the domains of our image partition are connected.  Connectedness is 

defined as follows: 

 For a connected domain, there is a path between the centers of any two pixels in the domain that 
makes only vertical and horizontal moves and that only visits pixels in the domain. 

The smoothing algorithm must maintain connected domains.  To do this we introduce the 

notion of a connection hull.  On Figure 5.6 move sets for a corner and bump transformation 

marker are labeled with M.  The connection hulls for the example transformation marker are 

labeled with C. 

Before precisely describing the connection hull, let’s state the first correctness requirement. 

 The connection hull of a transformation marker must lie completely within the marker’s home 
domain. 



59 59

The connection hull is slightly different for the two types of transformation markers and can be 

described precisely once we make the following definition.  The neighbor set of a transformation 

marker includes the pixels touching its move set along edges that are not part of the marker. 

 The connection hull of a bump transformation marker includes the pixels of its neighbor set that 
touch its move set in the direction opposite to that of movement. 

 The connection hull of a corner transformation marker includes its neighbor set and the pixels not 
in its move set that touch its neighbor set along at least two edges. 

As can be seen from Figure 5.6 the connection hull consists of the pixels beneath the 

transformation marker.  The purpose of the connection hull is to provide a path around the 

pixels of the move set.  If the hull is not complete, the transformation is disallowed.  

5.11 Computational Complexity 

Obviously we must traverse every boundary site at least once.  Since the move depth is limited 

to one, this traversal is O B( ) , where B  is the total boundary length of the partition.  Each 

move transformation is O m( ) , where m  is the number of pixels of the move set.  This 

bound is only possible if we use an O( )1  method like that of Chapter 3 for determining the 

Home domain in
gray.

Move sets labeled M.

Connection hulls
labeled C.

CM

CCM

CC

MC

MC

 

Figure 5.6 
Connection Hulls 
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error change in the underlying model.  If the sum of m  for all move transformations is M , 

the complexity of all move transformation is O M( ) . 

Once a transformation is made, we must re-traverse the effected boundary to see if another 

transformation should be made.  The total re-traversal is also O M( ) .  The overall algorithmic 

complexity is  

O B M( ) . 

5.12 Limitations 

When a transformation marker is encountered during a boundary traversal, it is not possible to 

know if making a transformation reduces the number of raster breaks, b , in the boundary 

without first looking for an active postfix.  A smoothing algorithm that is causal is 

computationally preferred.  The complexity of the state machine increases fairly quickly if all 

cost function parameters cannot be determined at the point at which the transformation 

marker is first discovered.  There does not seem to be any way to avoid non-causality and still 

use b  as a cost function term.  Fortunately, experiments have shown that the algorithm 

exhibits very good performance when   , the arbitrary weighting placed on b , is set to zero.   

The algorithm’s key limiting constraint is the inability to increase the boundary length if doing 

so would produce a better match to the underlying model.  If, for a given domain, all of the 

unsmoothed boundary lies within the optimal smoothed location, the algorithm’s result also 

lies within the optimal location.  A key observation is that no part of the boundary can move 

horizontally or vertically beyond the locations of the initial unsmoothed horizontal and vertical 

maxima and minima. 

5.13 Experiments 

We now present the results of using the smoother on one synthetic and one natural image.  We 

use the following parameters  

 E MSE  
  0  
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  1  

with the smoothing cost function: 

   C E l b        ( )  

defined in Section 5.5. 

Since   0 , the raster break count is not used in the cost function and it reduces to: 

  C E l     

The results without b  are quite good and b  calculation has been deferred to future work.  

Results for one synthetic image, Syn2, and one natural image, Lena follow. 

Figure 5.7 is the synthetic image Syn4.  Syn4 consists of three constant patches laid over a 

vertical ramp intensity function.  The entire image is overlaid with additive noise,   32 .  The 

average gray levels for domains one - three are 160, 224 and 64 respectively.  With the origin in 

the upper left and coordinates increasing down and to the right, domain number four’s 

intensity function is   y .   
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Syn4 is designed to be quite difficult to partition.  The domain extraction algorithm of Chapter 

0 produced the domains of Figure 5.8.  The signal to noise ratio at the lower boundary of 

domain 2 is  , and indeed the extraction procedure has problems with this boundary.  If the 

noise suppression factor is too large, domain 2 becomes too small.  If it is too small, it spreads 

over the bottom of the image.  Figure 5.8, corresponding to a suppression factor of 768, is the 

best result attainable. 

 

Figure 5.7 
Synthetic Image Syn4 

1

32

4

 

Figure 5.8 
Four Domain Partition of Syn4 
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The surrounding figures show the result of smoothing the domain boundaries with increasingly 

larger smoothing parameter, .  For lower values of  (Figure 5.9, Figure 5.10) smoothing is 

highly local. 

 

Figure 5.9 
Smoothed Syn4,  = 256 

 

Figure 5.10 
Smoothed Syn4,  = 512 

 

Figure 5.11 
Smoothed Syn4,  = 1024 

 

Figure 5.12 
Smoothed Syn4,  = 8192 
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As  increases the degree of smoothing increases.  The best results are attained for  = 1024.  

The number of raster breaks is finally reduced to the number in the underlying image at  = 

8192. 

Figure 5.13 shows how the algorithm converges to fixed points.  One domain has collapsed 

completely and the circle is significantly distorted.  Increasing  further results in three fixed 

points. 

Figure 5.14 shows the results of smoothing the initial partition against the image Syn3 (Syn4 

without additive noise).  The smoothing factor is set to one for this restorative experiment.  

The misplacement of the bottom edge of domain 3 is quite small.  One half of the boundary is 

one raster row too low and the other half is one raster row too high. 

 

Figure 5.13 
Smoothed Syn4,  = 100000 

 

Figure 5.14 
Smoothed Syn4, Restorative mode,  = 1 
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Figure 5.15 shows the unsmoothed domain boundaries for one test partition of Lena with 100 

domains. Figure 5.16 is the same partition smoothed with a smoothing factor,  , of 1024.  A 

total of 855 transformations were performed to produce Figure 5.16.  Raster breaks are shown 

as black dots in both figures.  

Table 5.4 is boundary data for the unsmoothed partition and smoothed partitions with two 

different values of .  When  is small the error in the underlying model actually decreases and 

only increases slightly with increased smoothing.  The boundary length and number of raster 

breaks are decreased proportionately as smoothing increases. 

5.14 Summary 

We developed the raster-break as a formal measure of boundary noise in an image partition 

and used it to design a state-machine boundary smoothing algorithm.  We applied the moment 

 
 

Figure 5.15 
Unsmoothed 100 Domain Lena 

 
Figure 5.16 

Smoothed 100 Domain Lena,  = 1024 

Lena Boundary Separators Raster Breaks PSNR MSE 
Unsmoothed 7946 946 27.4 118.5 
Smoothed  = 1 7525 572 27.8 106.8 

Smoothed  = 1024 6182 296 27.1 127.3 
Table 5.4 

100 Domain Lena, Boundary Data 
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operators and error functions of Chapter 3 to the smoother’s cost function.  We showed the 

computational complexity of the smoother to be O B M( )  where B  is the boundary length 

of the partition and M  is the number of pixels moved. 
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6. Domain Boundary Coding 

6.1 Background 

The problem of coding domain boundaries in digital images has been addressed previously 

from two perspectives.  Chain coding17 is a method of coding a contour in the image plane with a 

series of movements (north south east west or right left forward backward) along the contour.  

Raster neighborhood coding18, scans a digital image in raster order and uses classification 

information available from previously decoded pixels (above and to the left of the current 

pixel) to develop a context dependent probability estimation of the classification of each pixel.  This 

estimation is used to reduce the information needed to make a classification.  Once all pixels 

have been classified, a boundary description can then be inferred by placing a boundary 

element between any two pixels with differing classifications. 

Most work with contour coding has been on black/white images. We are interested, however,  in 

coding the boundaries between domains in a partitioned general (four or more classifications) 

image.  As we next show, there are subtle but important differences between contours on a 

black/white image and those on a partitioned general image. 

6.1.1 Chain Coding 

Chain codes can be divided into two major families, the distinguishing feature being the 

number of possible directions of movement at each point in the chain.  With the recent 

application of context dependent probability estimation to four-way chains19, the desirability of 

eight-way chains is somewhat attenuated.  We focus exclusively on four-way chains. 

Three types of information must be provided for a general-purpose boundary chain code:  

chain starting points, chain direction information, and chain termination indicators.  When 

chain coding the boundary of black/white images19, each chain is guaranteed to return to its 

starting point.  Obviously, no two black features can touch each other or they would be the 

same feature.  This characteristic allows self-terminating chains, where termination information is 

implicitly delivered by return to the starting point. 
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Reliable termination conditions without backtracking allow for simplified direction 

information.  Only three possible decisions are possible at each point on the boundary, turn 

left, right or go straight.  The base information per chain event is reduced from two to log ( )2 3  

bits.  Unfortunately, when chain coding the boundaries of a general image partition, things get 

more complicated and some form of redundancy must be introduced. 

One way to deal with the termination problem is to completely traverse the boundary of all 

domains in a partition20.  Unfortunately, this results in the traversal of all boundary separators 

twice.  For example a vertical separator is encountered once when traversing the domain to its 

left and again  when traversing the domain to its right.   

Another possible solution is to dispense with the abstract boundary entirely and trace through 

the centers of a domain’s peripheral pixels20.  This works well for domains that are only one 

pixel wide.  However, it still does not eliminate double traversal for domains wider than one 

pixel and some form of backtracking is needed to deal with domains with shapes like or 

. 

6.1.2 Raster Neighborhood Coding 

The most common use of raster neighborhood coding is to classify pixels on black/white 

images such as digital facsimile transmissions.  A neighborhood template gives a context dependent 

probability estimation of the black/white value of a pixel.  If the context dependent 

probabilities of occurrence of black and white pixels are unequal, the estimate reduces the 

information necessary to determine the classification of a pixel.  The degree to which the 

probabilities of occurrence of the various symbols in an alphabet differ is called the probability 

skew of the alphabet. 

The base information needed to code a two symbol alphabet is one bit per pixel.  Any symbol 

probability skew in the context dependent probability estimator reduces this value.  Clearly, 

once all pixels have been classified, contour information is readily available.  An International 

Standards Organization (ISO) standard called the JBIG (Joint Bilevel Image Group) bilevel 

image compression algorithm is perhaps the best known implementation of this technique. 
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On the general image, at least four classifications, or colors, are needed to unambiguously 

delineate domain boundaries.  Although the four-coloring problem (coloring all domains of a 

partition with only four colors and assigning different colors to all pairs of adjacent domains) is 

difficult, if one was available the raster neighborhood coder could be extended directly by 

doubling the number of possible pixel classifications. 

One can dispense with the four-coloring and extend the raster neighbor coder with the simple 

expedient of assigned edges21.  If pixels are thought of as square two dimensional lattice sites, 

there is a separator site to each pixel’s north, south, east, and west.  A separator site may or may 

not be occupied.  Each pixel is assigned two of the four separator sites that surround it.  Since for 

an image with N  pixels there are 2N  possible separators, this assignment is sufficient to cover 

all possible partitions. 

Typically, for a raster scan, each pixel is assigned the separator sites to its south and east.  If a 

separator site is empty (no separator), then the two pixels on either side of the site are in the 

same domain.  If it is full (a separator exists), they are not.   

In addition, the probability estimation context is expanded to hold probability estimates of four 

symbols for each neighboring pixel, indicating the presence of zero, either, or both separators.  

For a four symbol alphabet, the base coding rate is two bits/pixel.  Again, any symbol 

probability skew in the context dependent probability estimator reduces this value. 

One disadvantage of the raster technique is that a decision must be made for every pixel site in 

an image even when the number of boundary separators is fairly sparse.  The main advantage 

of the method is that it is inherently single pass and has highly local memory accesses. 

6.2 A Boundary Partition Classification 

We use the domain count, P , of a boundary partition and the pixel count, N , of its 

underlying image to develop a boundary partition classification.  If P
N

N


log2

, then a partition is 

dense.  If P N , then a partition is sparse. 
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Recall from Chapter 1 that a piecewise smooth image partition cannot be dense.  Further, when 

coding an image via a piecewise smooth approximation at the lowest bit rates the partition will 

be sparse or nearly so.  Clearly, to code a piecewise smooth image model at the lowest possible 

bit rate, the boundary code must be optimized for sparse partitions. 

For sparse partitions the chain code has an intuitive appeal as the lowest cost approach to 

boundary representation - if the problem of chain termination can be addressed.  The stroke 

code of the next section does just that. 

6.3 Chain Coding via Strokes 

The stroke code develops a partition via a series of strokes.  Each stroke consists of a start point, 

and one or two boundary chains.  Each chain of a stroke is terminated upon encountering a 

previously decoded stroke or the image boundary.  The key idea is that corner encounters with 

previously decoded strokes may or may not terminate a stroke.  Further information is supplied 

by the encoder to disambiguate such encounters.   

Six small domains
plus surround.

Start points labeled
with S.

Stroke 5 has a corner
encounter.

S3S2S1

S4

S5

Stroke 1
Stroke 2
Stroke 3
Stroke 4
Stroke 5

 

Figure 6.1 
Stroke Example 
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Strokes are decoded in turn:  start, chain and termination information is interleaved in the code 

stream.  Once the boundary is fully specified via strokes, domains may be grown by recursively 

joining groups of pixels that do not have a separator between them.  Figure 6.1 has six domains 

of 1, 2, 5, 6, 8 and 9 pixels plus the surround.  As can be seen, only five strokes are necessary to 

completely specify the boundary between these domains. After first covering some 

preliminaries, we develop stroke start points, move to termination disambiguation and then 

apply context dependent probability estimation to stroke chains. 

6.3.1 Binary Decisions 

The entire stroke code is comprised of binary decisions.  Each decision is a yes or no answer to 

a question posed by the decoder.  The information content of each question depends upon the 

uncertainty of its answer.  Shannon22 developed a quantitative measure of the average 

information in a series of binary decisions.  If pl  is the probability of the least probable 

outcome and pm  is the probability of the most probable outcome in a sequence of decisions, 

then the entropy of the decisions is: 

H p p p pl l m m  log log2 2 . 

If the probabilities of occurrence of each symbol are fixed, the total information content of a 

binary code is d H  where d is the total number of binary decisions in the code.  We use a 

technique called the Laplacian estimator that dynamically develops estimated decision 

probabilities from the probability of their occurrence thus far in the code.  If after n 1 

decisions of a series of decisions p nm ( )1  is the estimated probability of the occurrence of 

the most probable outcome, then the information content of a most probable outcome 

occurring at decision n  is  log2 pm .  Similarly, the information content of a least probable 

outcome occurring at decision n  is  log2 pl  or equivalently  log ( )2 1 pm .  The total 

information in a series of dynamically estimated decisions is the sum of the information of each 

outcome. 
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If nm is the number of most probable outcomes and nl  is the number of least probable 

outcomes thus far in a series of n  binary decisions, then p
n

n nm
m

m l




 and p
n

n nl
l

l m




 are 

the probability estimations for the next outcome.  The sums nm and nl  are called the context of 

a series of decisions.  A sequence of binary decisions can have a number of contexts.  For 

example, one of the contexts of the stroke code is the stroke location context.  For all the pixels 

in an image, the decoder asks “Does a stroke start at this pixel?”.  The number of yes answers 

and no answers are the stroke location context.  Actually, there are several stroke location 

contexts, which we discuss in the next section. 

Absent prior evidence to the contrary, all decision context sums are initialized with one most 

probable and one least probable outcome.  This results in equal outcome probabilities until at 

least one decision is made. 

6.3.2 Stroke Start Points 

Each pixel in the image is a possible stroke location.  The decoder scans the image in raster 

order and determines whether or not a pixel is a stroke location.  The information associated 

with this process is called the stroke location information.  Once a decision has been made that a 

pixel is a stroke location, different processing occurs depending upon the known boundary 

state at the stroke location. 

Every stroke location can have a separator along either of its northern or western edges or 

both. If a stroke location already has one of its separators known from a previously decoded 

stroke, it has only one stroke chain that starts in the direction of the undecided edge. If it 

already has both of its separators known, it is not a stroke location and no deciding information 

is needed from the encoder. 

If a stroke location has neither separator known, it can be either bare or southeast corner connected.  

A bare location has no edges impinging on its northwest corner.  A southeast corner connected 

location has boundary separators along both the southern and eastern frontiers of the pixel to 

its northwest. 
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A bare location must be both northernmost and westernmost since it has no other edges with 

which to connect.  The chain starting along its western edge and heading south is decoded first.  

If that chain is not closed, a second chain is decoded starting along the stroke location’s northern 

edge and heading east.  A closed chain returns to its start location heading in the opposite 

direction from its outset. 

There are four stroke location contexts corresponding to either one or two previously decoded 

edges, and bare and southeast corner connected locations where no previously decoded edges 

are known.  Table 6.1 summarizes these contexts and gives them names. There is no 

information associated with the te context; these pixels are not possible stroke locations.  The 

skew of the ze context is typically much higher than that of the se or oe contexts, thereby 

reducing the information of the three contexts relative to that of a single context containing all 

se, oe, and ze locations.  On Figure 6.1 strokes one and four have ze start points.  Strokes two, 

three and five have oe start points. 

Since it can connect to the boundary corner to its northwest, a southeast corner connected 

location cannot know if it has a chain starting along its western edge, its northern edge or both.  

Further chain start disambiguation information is supplied by the encoder to differentiate between 

the three possibilities.  Disambiguation takes two binary decisions.  The first decision is both 

chains or one.  If one, the second decision is north or west. 

The se context also holds the statistics of the start disambiguation decisions.  Three sums are 

maintained, the number of southeast corner connected locations with two stroke chains, the 

number with a northern chain, and the number with a western chain. 

Name Determining information 
ze Zero previously decoded edges, bare 
se Zero previously decoded edges, southeast corner to northwest 
oe One previously decoded edge 
te Two previously decoded edges 

Table 6.1 
Stroke Location Contexts 
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Figure 6.2 and Figure 6.3 show stroke locations as darker dots for 100 and 3200 domain Lena 

partitions.  Note how larger domains may have many stroke locations along their periphery.  

Once a large domain is decoded, its periphery gives likely stroke locations.  This is the source 

of the skew disparity between the ze and se or oe contexts. 

6.3.3 Stroke Chain Termination 

A stroke chain implicitly terminates if it makes a  intersection with the image boundary or 

with a previously decoded stroke.  A corner intersection may or not may not terminate a stroke 

chain.  Corner disambiguation information is supplied by the encoder to distinguish the two cases.  

The corner disambiguation context, designated cd, holds the statistics of the disambiguation 

outcomes.  Since stroke chains can only be terminated by intersection with another stroke, 

there are no hanging (unterminated) chains present at any point in the decode process.  On 

Figure 6.1 stroke five has a contining corner junction with stroke one and a terminating corner 

junction with stroke three. 

 

Figure 6.2 
Boundary and Stroke Start Points 

100 Domain Lena 

 

Figure 6.3 
Boundary and Stroke Start Points 

3200 Domain Lena 
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6.3.4 Stroke Chains 

Stroke chains cannot backtrack and are terminated by intersection with another stroke.  

Therefore, stroke chains are three direction chains: left, right straight.  This three-way decision 

is reduced to two binary decisions via a two level coding tree.  The first decision differentiates 

between straight and turn.  The second between left and right. 

The sixteen probability estimation contexts of Table 6.2 are used to reduce the information 

content of the stroke chains.  Having multiple contexts allows us to increase the average skew 

of the binary decisions over that of a single context.  These contexts are designed to capture 

the statistics of chains that result from the smoothing procedure of Chapter 0.  A simple state 

machine determines the context used to code each chain event.  Several contexts end in ss+ 

and their purpose is to differentiate straight sections that are known to be long (two or more 

straight events) from those that are not yet known to be long. 

ls previous event straight, left prior to that 
rs previous event straight, right prior to that 
ll previous event left, left prior to that 
rr previous event right, right prior to that 
lss+ at least two previous events straight, last turn left 
rss+ at least two previous events straight, last turn right 
rl previous event left, right prior to that 
lr previous event right, left prior to that 
rl(rl)+ rl repeated more than once 
lr(lr)+ lr repeated more than once 
l(lr)+l ll with at least one included rl 
r(lr)+r rr with at least one included lr 
(rl)+s special case of ls  
(lr)+s special case of rs  
(rl)+ss+ special case of lss  
(lr)+ss+ special case of rss  

Table 6.2 
Stroke Chain Contexts 
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The main point is that these contexts are not simply the last few chain directions.  For example, 

the lss+ context is active if the last two directions traveled were straight and the last turn 

previous to the straight section was a left turn.  The lr(lr)+ context is active if the last direction 

was a right turn and all directions prior to that right were alternating turns beginning with a left 

turn.  Taken together these contexts are designed to capture the behavior of the raster drawn 

boundary  preferred by Chapter 0’s smoothing procedure. 

6.4 Experiments 

Table 6.3 and Table 6.4 show the results of simulating the stroke code against unsmoothed and 

smoothed Lena partitions of between 100 and 3200 domains*. The first column is the number 

of domains in the partition, the second column is the total number of separators in the 

boundary, and the third is the total number of strokes necessary to code the boundary.  The 

fourth through seventh columns are the location, corner disambiguation, chain and total 

information for the stroke code.  The location information column includes chain start 

disambiguation information.  Since the information content of a sequence of binary decisions is 

a very good estimate of the number of bits necessary to code that sequence using an arithmetic 

coder, column seven is a good estimate of the total bit count necessary to code the partition. 

                                                 
* Refer to Figure 5.15, Figure 5.16, Figure 6.2, and Figure 6.3 for visual representations of several test data sets. 
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The first thing to note is the significant difference between the code’s performance on the 

smoothed and unsmoothed examples.  This is due primarily to decreased chain direction 

entropy for the smoothed boundary.  Direction entropy for the 100 domain unsmoothed Lena 

is 1.15, but for the corresponding smoothed example is only 0.8.  Also of interest, is that corner 

disambiguation information is never a significant percentage of the total code length.  This is 

really the main reason for the overall success of the code.  

The last point to glean from Table 6.3 and Table 6.4 is that chain direction entropy increases 

and chain location information becomes more significant as the domain density increases.  

Even so, the results are good for the smoothed boundary right up to the dense threshold.  This 

is especially significant since the code is designed to operate most efficiently on sparse 

partitions.  

Counts Information 
Domains Separators Strokes Location Corner Chain Total 
100 7929 96 948 33 9105 10085 
200 10269 190 1712 59 12033 13804 
400 15912 392 3219 99 20234 23552 
800 19139 765 5638 245 24007 29890 
1600 25966 1529 9850 419 34342 44611 
3200 33601 2905 16647 1328 44153 62129 

Table 6.3 
Stroke Data (Unsmoothed Lena) 

Counts Information 
Domains Separators Strokes Location Corner Chain Total 
100 6151 99 949 5 4957 5911 
200 7921 199 1656 13 6495 8165 
400 12285 397 3073 35 11795 14903 
800 15621 772 5367 149 15697 21213 
1600 19331 1543 9007 313 20184 29503 
3200 25396 2914 15065 1214 27752 44031 

Table 6.4 
Stroke Data (Smoothed Lena) 
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Since the stroke code handles the chain termination problem with very little overhead, it 

appears to be superior to any previously reported chain code for partitioned general images.  

We now examine how it compares with raster neighborhood codes.  As a lower bound for 

raster codes, we can look at the performance of the Q-Coder23 on northwest-black boundary 

images.  A northwest-black boundary image is formed by turning a pixel black if it is adjacent 

to the northern or western frontiers of a domain and white otherwise.  This results in a 

black/white image similar to those of Figure 6.2 and Figure 6.3*. 

This means that we are comparing a one bit/pixel base rate raster code to the stroke code.  

Remember, a one bit/pixel base rate raster code can only yield complete boundary information 

for black/white images.  A general rule of thumb is that a one bit raster code only knows about 

as many separators as there are northwest-black pixels.  The greater the difference between the 

number of separators and northwest-black pixels, the more information is needed by the one 

bit raster code to completely specify the boundaries of the equivalent partitioned general image.  

Clearly the Q-Coder used in this fashion produces shorter code streams than any two bit/pixel 

base rate raster neighborhood code. 

                                                 
* Just turn the gray pixels black. 

Counts Information 
Domains NW Pixels Q-Code Separators Stroke Code 

100 6647 12643 7929 10085 
200 8641 16343 10269 13804 
400 13086 25407 15912 23552 
800 15751 30087 19139 29890 

1600 21108 38014 25966 44611 
3200 26792 43607 33601 62129 

Table 6.5 
Stroke Code vs Q-Code 

Unsmoothed Lena 
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Table 6.5 and Table 6.6 compare the stroke code and northwest-black Q-Code for the 

previously examined unsmoothed and smoothed Lena partitions.  The first column is the 

number of domains in the partition, the second column is the number of northwest-black 

pixels in the Q-coded test image, the third column is the corresponding Q-code length.  The 

fourth column is the number of separators in the partition. Note how the number of separators 

becomes increasingly greater than the number of northwest-black pixels as the number of 

domains increases.  The last column is the stroke code length.  Surprisingly, the stroke code is 

superior to the Q-code all the way up to 800 domains. 

Counts Information 
Domains NW Pixels Q-Code Separators Stroke Code 

100 5148 7999 6151 5911 
200 6620 10137 7921 8165 
400 10118 16609 12285 14903 
800 12942 20746 15621 21213 

1600 15998 24349 19331 29503 
3200 20473 30132 25396 44031 

Table 6.6 
Stroke Code vs Q-Code 

Smoothed Lena 
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Figure 6.4 charts the data of Table 6.5 and Table 6.6.  Again note the crossover point at around 

800 domains for both the smoothed and unsmoothed groups of partitions.  It is evident that 

the stroke code is superior to any two bit raster neighborhood code for sparse partitions.  What 

is not yet known is exactly where the cross-over point with two bit raster codes lies or even if it 

exists. 

6.5 Summary 

We classified image partitions as sparse, dense or between sparse and dense.  We developed the 

stroke code for representing the boundaries of a partitioned image.  It is  the first code to 

handle the three direction chain termination problem.  We apply the raster drawn boundary 

criteria of Chapter 5 to develop improved chain direction probability estimation contexts.  We 

showed the stroke code to be superior to raster neighbor codes on sparse image partitions. 
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7. Geometry Implicit Coding of Two Dimensional Polynomials 

We continue with our task of minimally representing a piecewise-smooth image model by 

developing methods to code each domain’s polynomial intensity function.  We assume that the 

domain boundaries of the image model are coded separately and are available to the polynomial 

coder and decoder.  We develop the method of sentinel points, whereby certain points in a 

domain, known only from the domain’s geometry, are used so solve a system of simultaneous 

equations that yield the domain’s intensity function.  With this technique, the locations of the 

sentinel points are known implicitly and only their values must be decoded to recover the 

model. 

A global parameter associated with each image model is the maximum order of its domains’ 

polynomial intensity functions.  The polynomial order of a domain is reduced when it does not 

have sufficient support for all the terms of the model’s maximum order polynomial.  The 

stability parameter of the modified Cholesky method of Chapter 3 is the arbiter of what 

polynomial terms are supported by a domain.  This stability parameter is another global 

parameter of each model. 

The intensity functions of a model’s domains can be represented with varying accuracy.  This is 

accomplished via variable quantization of the sentinel point values.  The amount of 

quantization applied to sentinel point values is determined implicitly by the size of the 

associated domain.  Three global parameters determine the maximum and minimum 

quantization applied to sentinel point values and the distribution of the sentinel point values 

into the various quantizaters.   

7.1 Background 

Typically11,24, segmentation-based image coding schemes allocate eight bits per polynomial 

coefficient when estimating bit rates.  Kunt24 suggests recovery of polynomial coefficients from 

“regularly spaced” eight bit data values.  In Section 7.3, we develop an algorithm for 

determining data value locations for first through third order approximating polynomials.  
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These locations are constrained to lie within their associated domain and as such, are not 

regularly spaced. 

7.2 Sentinel Points and Polynomial Reconstruction 

Given a connected discrete two dimensional domain,  , we would like to find the ( , )x y  

coordinates of n  sentinel points that can be used to optimally recover any n  term polynomial, 

z f x y ( , ) , over the domain.  All points of   have positive coordinates and the range of z , 

Rz , is limited to lie between two positive integers zL  and zH . 

If given n  tuples ( , , )x y zi i i  we can construct an n  term polynomial through them by solving 

a system of simultaneous equations.  For example, given the two dimensional linear 

polynomial: 

z ix jy k   , 

and three points on its surface, ( , , )x y z1 1 1 , ( , , )x y z2 2 2 , and ( , , )x y z3 3 3 , we can solve the 

system: 

.

x1

x2

x3

y 1

y 2

y 3

1

1

1

i

j

k

z 1

z 2

z 3  

to yield the coefficients i , j , and k .   

The accuracy with which we can recover the polynomial coefficients using such a system is 

limited by the accuracy to which the zi  are known.  If the zi  are know to a fixed precision, our 

problem is to find the sentinel points, ( , )x yi i , that no matter what the polynomial yield its 

best approximation given the zi . 

One may be tempted to specify a regular pattern of sentinel points by inscribing   inside of a 

figure such as a rectangle.  Doing this, however, does not constrain the values of the sentinel 
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points to Rz .  For higher order polynomials, points even slightly outside of   can take on 

values significantly beyond Rz .  In other words,  ’s polynomial function is guaranteed to be 

within its range only over   and deviations outside of   are not bounded.  Another way of 

saying this is that the polynomial is interpolating over the domain and extrapolating outside of 

the domain. 

Since our goal is to code a polynomial as accurately and using as few bits as possible, we can 

take advantage of the known Rz  to maximize the precision to which the zi  are known if we 

constrain the sentinel points to lie within their corresponding domain.  This constraint leads to 

the sentinel point selection algorithm of the next section. 

7.3 Choosing Sentinel Points 

We now present algorithms for choosing optimal sentinel point locations for four different 

polynomials: 

 z k  

 z ix jy k    

 z fx gxy hy ix jy k     2 2  

 z ax bx y cxy dy fx gxy hy ix jy k         3 2 2 3 2 2 . 

These points are optimal in the sense that their locations minimize the derivative of the 

recovered polynomial coefficients with respect to changes in their data values 

7.3.1 Zero Order System 

For the zero order system, the solution is trivially any point in   since all points have the same 

value.  We pick the point whose y  coordinate is less than or equal to any other point in   and 

whose x  coordinate is less than any other point with the same y  coordinate.  Since our 
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coordinate system has x  increasing to the right and y  increasing downward, this point is 

designated the northwestern most point in  . 

7.3.2 First Order System 

The two-dimensional linear polynomial is: 

z ix jy k   . 

We desire to find three points, ( , )x y1 1 , ( , )x y2 2 , and ( , )x y3 3 , that when used to solve the 

system: 

.

x1

x2

x3

y 1

y 2

y 3

1

1

1

i

j

k

z 1

z 2

z 3  

yield the best values of i , j , and k  given that there may be error in the values, z1 , z2 , and z3 . 

The determinant of the sentinel matrix is: 

D .x1 y 2
.x1 y 3

.x2 y 1
.x2 y 3

.x3 y 1
.x3 y 2  

and the solution for the polynomial coefficients is: 

i

j

k

..1

D

y 2 y 3

x2 x3

.x2 y 3
.x3 y 2

y 1 y 3

x1 x3

.x1 y 3
.x3 y 1

y 1 y 2

x1 x2

.x1 y 2
.x2 y 1

z 1

z 2

z 3 . 

If we differentiate i , j , and k  with respect to z1 , z2 , and z3  we can find the sensitivity of the 

coefficients with respect to changes in sentinel point values.  If we jointly minimize the 

coefficient sensitivities, we can obtain the sentinel points that give the best possible accuracy 

for i , j , and k  given an error bound on their values.   Differentiating with respect to z1  

yields: 
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d

dz 1

i

j

k

y 2 y 3

D

x2 x3

D

.x3 y 2
.y 3 x2

D . 

Differentiation with respect to all three sentinel point values yields nine sensitivities, three for 

each coefficient.  Of course it is not possible to bring all sensitivities to zero.  We could attempt 

a mean squares solution, but we really desire an approximately accurate solution that can be 

quickly calculated.   

One observation is that all sensitivities are divided by D .  If D  is large, all sensitivities are 

small.  It is not immediately obvious how to make D  large, but if we add the further 

constraint that y y1 2 , then D  reduces to: 

D reduced
.x1 x2 y 1 y 3 . 

What we want is two points with the same y  coordinate that maximally differ in x  and a third 

point that maximally differs in y  from the other two.  Or if we add the constraint x x1 2 , we 

want two points with the same x  coordinate that maximally differ in y  and a third point that 

maximally differs in x  from the other two.  The coordinate equivalency constraint allows us to 

separate the problem into one in x  and one in y .  An optimal solution to even the separated 

problem requires O m n( )  time.  m  is  ’s extent in x  and n  is its extent in y . 

To reduce the algorithmic complexity, we can adopt a greedy approach and maximize each 

term of the reduced D  in turn: 

1. First choose  ’s maximal length rectilinear chord and make its endpoints ( , )x y1 1  
and ( , )x y2 2 .  Designate this chord the domain’s primary chord. 

2. Find the point on  ’s periphery that is maximally distant in the opposing 
coordinate from the primary chord and make that point ( , )x y3 3 .  Designate the 
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line drawn perpendicularly from the primary chord and through ( , )x y3 3  the 
secondary chord. 

3. Break ties by choosing chords at minimal perpendicular distance from the centroid 
of  .   

Since the points on the periphery of   are examined at most twice, the greedy algorithm for 

choosing linear sentinel points is O m n( ) . 

7.3.3 Second Order System 

Solving for the sentinel points for the second order polynomial: 

z fx gxy hy ix jy k     2 2  

is intractable in its intact form.  To make things tenable, we again separate the problem.  Using 

a greedy approach, we solve first for sentinel points that yield x  coefficients, next for points 

that yield y  coefficients and then a final point for the mixed coefficient.   

Using the method of the previous section, we develop a system of equations in three 

unknowns to find the best three points for a single dimensional domain.  Separating out the x  

problem yields the following sentinel matrix: 

x0
2

x1
2

x2
2

x0

x1

x2

1

1

1 , 

whose determinant is: 

D ..x0 x1 x0 x2 x1 x2 . 



87 87

7.3.3.1 Primary Chord 

If the points are arbitrarily ordered, x x x0 1 2  , we can maximize the middle factor by 

choosing the endpoints of our one dimensional domain,  , for x0  and x2 .  Differentiating 

D  with respect to x1 : 

d

dx1
D .x0 x2 x1 x2

.x0 x1 x0 x2
 

and finding a local minimum yields: 

x1
x2 x0

2 , 

which is simply the midpoint of  . 

Now that we know how to maximize D  for a given  , we can find the maximal D  

rectilinear chord of our two dimensional domain.  Noting the equivalency of interchanging x  

and y , this primary chord can be either or horizontal or vertical.. We drop the x  notation and 

designate the three sentinel points of the primary chord p1 , p2 , and p3 . 

7.3.3.2 Secondary Chord 

We next find a secondary chord in the opposing dimension that has maximal D  relative to the 

primary chord.  By relative, we mean that only two of the D  points, s1 , s2 , and s3  of a 

secondary chord are independent of the primary chord.  The dependent D  point of a secondary 

chord is its intersection with the primary chord. 

If sp  is a secondary chord’s dependent D  point, the relative D  of a secondary chord, Ds , is 

found by fixing one its D  points, say s1 , at sp .  To maximize Ds  our task is reduced to 

finding optimal locations on the chord for s2 , and s3 . Clearly, the point on a secondary chord 

furthest from the intersection point is one of its maximal Ds  points. 
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To find the final independent maximal Ds  point of a secondary chord, one option would be 

an exhaustive search among the points of the chord.  To keep the secondary chord algorithm 

O( )1 , however, we use the   algorithm to find a secondary chord’s three best independent 

points.  We then substitute sp  for each of these points and keep the result with maximal D .  

This takes only three interchanges and comparisons. 

Next we find the chord combination that maximizes the product D Dp s .  Since we have already 

fixed the primary chord, this is search consists of finding the secondary chord with maximal 

Ds .  The two independent maximal Ds  points of the secondary chord together with the 

three points of the primary chord give us five of the desired six sentinel points for the second 

order polynomial.  These points define the unmixed polynomial terms.   

7.3.3.3 Mixed Term Sentinel Points 

To find the mixed term sentinel points, we recognize that the primary and secondary chords 

define a coordinate system with its origin at the chord intersection.  We then maximize Dm  of 

the mixed term sentinel matrix in the chord coordinate system.  The mixed term sentinel matrix of 

  contains only a single component:   x y1 1 .  The point in   that maximizes this product in 

the new coordinate system is the mixed term sentinel point.  That point can be found by 

procedurally searching through all points of the periphery of  . 

7.3.3.4 Computational Complexity 

 Finding the mixed term sentinel point is proportional to the length of perimeter of 
  or O m n( ) . 

 Finding the primary chord is O m n( ) :  we examine three points on each 
rectilinear chord of a domain.   

 Finding the secondary chord is O n( )  or O m( ) . 

 The overall computational complexity is  O m n( ) .   

Up to this point we have assumed that all one dimensional chords,  , of   are connected; 

this may not be the case.  Accordingly, the midpoint of   may not lie in  .  If so, we modify 
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the   algorithm to substitute the point lying in   that is closest to its midpoint for x1 .  

Doing this increases the sentinel point computational bound to O m n( ) .  Fortunately, 

domains that press against this bound are rare in our image coding application. 

7.3.3.5 Summary 

To summarize, the second order sentinel point algorithm is: 

1. Use the   algorithm to find the rectilinear chord of   with maximal D  and 
obtain three sentinel points. 

2. Using the secondary chord algorithm, find  s  that maximizes Ds  and obtain two 
additional sentinel points. 

3. Find the point on the perimeter of   that maximizes Dm  and use it as the final 
sentinel point. 

7.3.4 Third Order System 

To solve the sentinel point problem for the third order polynomial 

z ax bx y cxy dy fx gxy hy ix jy k         3 2 2 3 2 2  

we again separate the problem. 

7.3.4.1 Third Order   Interior Points 

 The separated third order sentinel matrix in x  is: 

x0
3

x1
3

x2
3

x3
3

x0
2

x1
2

x2
2

x3
2

x0

x1

x2

x3

1

1

1

1
. 

The maximal D  interior points for the third order   problem are: 
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x1

x0 x3

2
.5

10
x3 x0

x0 x3

2
.5

10
x3 x0

. 

7.3.4.2 Mixed Coefficients 

The mixed coefficient sentinel system now contains more than one element: 

.

.x1 y 1

.x2 y 2

.x3 y 3

.x1
2 y 1

.x2
2 y 2

.x3
2 y 3

.x1 y 1
2

.x2 y 2
2

.x3 y 3
2

a

b

c

z 1

z 2

z 3
. 

D  for the mixed term matrix is: 

D ......x2 x1 y 2 x3 y 3 y 1
.y 2 x1

.x3 y 2
.y 3 x1

.x3 y 1
.y 1 x2

.x2 y 3 . 

Working in the chord coordinate system we greedily maximize Dm  as follows.  First 

temporarily set ( , )x y2 2 , and ( , )x y3 3  to zero and find the sentinel point that maximizes the 

remainder of Dm : 

.x1 y 1. 

Next reinstate ( , )x y2 2  and find the point that maximizes 

.x2 y 2
.x1 y 2

.x2 y 1 . 

Finally, find the point that maximizes the overall Dm : 

..x3 y 3
.y 2 x1

.x3 y 2
.y 3 x1

.x3 y 1
.y 1 x2

.x2 y 3 . 
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Since none of the mixed terms are factors of one another, we can constrain the mixed term 

search to the periphery of  , and the algorithmic complexity bounds developed for the second 

order problem still apply.  The third order sentinel algorithm is O m n( )  

7.3.5 Examples 

We end this section with some sentinel point examples.  Figure 7.1 shows the zero order 

sentinel points for synthetic image Syn15.  They are simply northwestern most.  Figure 7.2 

shows the first order sentinel points for the same image.  Note that all points are peripheral. 

Figure 7.3 shows the second order sentinel points for Syn15.  Interior points are now 

developing.  Figure 7.4 shows the third order sentinel points.  Three points per domain are 

now interior.   

 
Figure 7.1 

Zero Order Sentinel Points for Syn15 

 
Figure 7.2 

First Order Sentinel Points for Syn15 
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To help understand how the sentinel points fall, let’s find them for the ellipse in Figure 7.4.  

First, since this is a third order example, there are four primary chord sentinel points.  For this 

domain the primary chord is horizontal and its four sentinel points are found just below the 

dark horizontal line.  The three secondary chord points align vertically to the left of the 

vertically drawn line.  The three mixed coefficient points are labeled M1, M2, and M3. 

As a final example, Figure 7.5 and Figure 7.6 show third order sentinel points for 100 and 800 

domain partitions of Lena.   

 
Figure 7.3 

Second Order Sentinel Points for Syn15 

M3

M2

M1

 
Figure 7.4 

Third Order Sentinel Points for Syn15 
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7.4 Sentinel Points of Under-Constrained Domains 

We saw in Chapter 3 that a domain may not necessarily support all the terms of a given 

polynomial order.  Each image model has an associated maximum order of its domains’ 

polynomial intensity functions.  The polynomial order of a domain is reduced when it does not 

have sufficient support for all the terms of the model’s maximum order polynomial.  The 

stability parameter of the modified Cholesky method of Chapter 3 is the arbiter of what 

polynomial terms are supported by a domain 

When using sentinel points in a polynomial coding procedure, the coder and decoder both 

know the image model’s global Cholesky stability factor once it has been transmitted.  Using 

the same Cholesky method with the same stability factor as the encoder, the decoder can know 

which sentinel points to expect without any additional information from the encoder beyond 

the domain’s geometry. 

The terms of support are a function of domain geometry only, and can be determined before 

sentinel point discovery commences.  If we assign one sentinal point to each polynomial term, 

we need only develop sentinel points for the supported terms.  For example, if the maximum 

global model order is three and the x 3  polynomial term is not supported by a particular 

domain and is the only term in x  not supported, we reduce the x  term sentinel point search 

 
Figure 7.5 

Third Order Sentinel Points for a 100 Domain Lena 

 
Figure 7.6 

Third Order Sentinel Points for an 800 Domain Lena 
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to the second order   problem.  If both x 2  and x 3  are not supported by a domain, the x  

term sentinel point search reduces to the first order   problem. 

Unsupported mixed term sentinel points can be handled easily as well.  For second order 

models, we simply eliminate the single mixed term sentinel point if it is not supported.  For 

third order models, we simply bypass any unsupported terms in the greedy algorithm for 

locating mixed term sentinel points. 

7.5 Quantization 

Since we want to apply sentinel point polynomial reconstruction to lossy image coding, we now 

look at how the reconstruction degrades when the sentinel point values are quantized.  

Quantization of a set of data values constrains those values to take on a fixed number of 

values.  Each value is a function of the quantizer step size, Qstep .  The quantization function maps 

each data value to its corresponding quantized value.  The quantization function that we use is: 

P
round P

Q
Q

Q
Q

step
step

step
  

( )

2
 

where all operations except round () are integer operations. 

After expending so much effort finding sentinel points, we would hope that quantization of the 

sentinel points of   would not increase the error of our approximating polynomial above 

some reasonable bound.  We use the following definitions to develop such a bound.  Define 

the MSE of our full precision approximation as EF .  Define the additional error introduced by 

directly quantizing the data values predicted by the full precision approximation as EQD .  Define 

the MSE of the polynomial recovered with quantized sentinel points as EQS . 

If we assume independent noise sources and uniform distribution of data values into quantizer 

buckets, the MSE of the polynomial extracted from the quantized sentinel points should be 

bounded as follows: 
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E E EQS F QD  . 

The quantity  

G
E E

E
QS F

QD




 

is a measure of how well this bound is met.  Good sentinel point selection results in G  values 

near one.  Essentially, G  is the ratio of the error in the data values predicted by the quantized 

sentinel points to the error in the data values introduced by direct quantization of the values 

predicted by the full precision approximation. 

Table 7.1 shows the error introduced by quantizing the sentinel points of a 100 domain 

partition of Lena.  The first column is the quantizer step size used to generate columns two and 

four.  The second column is the MSE of the unquantized piecewise-smooth third order model 

of the image.  The third column is the additional noise expected from direct quantization of the 

intensity values produced by the full precision model.  The fourth column is the sum of 

columns two and three. The MSE of the model coded via quantized sentinel points is in the 

fifth column.  Although EQS  is slightly greater than E EF QD , the difference is quite small.  

Qstep  EF  EQD  E EF QD  EQS  PSNR 

0 126.8 0 126.8 126.8 27.10 
1 126.8 .25 127.1 127.3 27.08 
2 126.8 .5 127.3 127.6 27.07 
4 126.8 1.5 128.3 128.6 27.04 
8 126.8 5.5 132.3 134.2 26.85 

16 126.8 21.5 148.3 149.5 26.39 
32 126.8 85.5 212.3 224.4 24.62 
64 126.8 341.5 468.3 448.6 21.61. 

128 126.8 1365.5 1492.3 1228.3 17.23 
Table 7.1 

Quantization Error 
100 Domain Lena 
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The worst value of G  is 1.14, corresponding to a Qstep  of 32.  Interestingly, G  becomes less 

than one for quantizer step sizes greater than 32. 

Table 7.2 shows the same data for an 800 domain Lena partition.  Again the worst value of G , 

1.20, occurs for a Qstep  of 32.  This phenomenon is currently inexplicable. 

Figure 7.7 charts the square root of columns EQD  and EQS  of Table 7.1 and Table 7.2.  The 

RMS model error increases essentially as E E EQS F QD   which is as expected for two 

independent sources of error.  Particularly of interest is that models with higher initial error can 

be quantized quite heavily before additional distortion is introduced. 

Qstep  EF  EQD  E EF QD  EQS  PSNR 

0 25.3 0 25.3 25.3 34.10 
1 25.3 .25 25.6 26.4 33.92 
2 25.3 .5 25.8 26.6 33.89 
4 25.3 1.5 26.8 27.6 33.73 
8 25.3 5.5 30.8 33.1 32.93 

16 25.3 21.5 46.8 52.4 30.94 
32 25.3 85.5 110.8 128.1 27.06 
64 25.3 341.5 366.8 378.6 22.39 

128 25.3 1365.5 1390.8 1247.8 17.17 
Table 7.2 

Quantization Error 
800 Domain Lena 
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7.5.1 Variable Quantization 

Studies of human perception4 have shown that the eye is less sensitive to intensity variations of 

higher spatial frequency.  We can take advantage of this knowledge when coding an image, and 

quantize smaller domains more heavily than larger domains.  Smaller domains can also be 

quantized more heavily due to the nature of the extraction algorithms used in Chapters 3 and 4. 

Since smaller domains have a larger periphery-to-area ratio, they are preferentially merged to 

minimize the  boundary length term of the model cost function.  It is clear that the smaller the 

domain, the more its intensity must differ from its neighbors for it to persist through the 

domain growing process.  Since small domains differ significantly in intensity from their 

neighbors, they can be quantized more heavily before distortion becomes noticeable. 

We introduce a simple mechanism for implicit quantization based upon domain size.  For each 

image we specify three parameters.  Ql  is the quantizer step size to use for the largest domains 

in the image.  Qh  is the quantizer step size to use for the smallest domains in the image.  The 

third parameter is a knee value, k ,  that spreads the sentinel points into the different quantizer 

step sizes in use. 
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Figure 7.7 
Uniform Quantization Noise 

and Third Order Lena Examples 
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Domains whose size is greater than k  are quantized with a step size of Ql .  Domains whose 

size is in the range 
k

k
2

2   are quantized with the next larger quantizer step size.  At each 

factor of two reduction in size quantization becomes increasingly coarse until quantization 

reaches Qh  in which case all smaller domains are quantized at that step size.  The only 

overhead associated with this implicit quantization scheme is the information necessary to 

transmit the three parameters, Ql , Qh , and k  to the decoder.  

The implicit size rule combined with the size and fidelity dependencies allow for significant 

quantization over a wide range of compression ratios.  When compression is high, the overall 

error is already significant before quantization and therefore quantization can be quite heavy 

before it introduces additional distortion.  When compression is low, most of the domains are 

quite small and can be quantized more heavily. 

Table 7.3 and Table 7.4 show the distribution of quantization step sizes for sentinel points of 

the previously discussed 100 and 800 domain Lena partitions.  There are two quantizer step 

sizes in use in the 100 domain partition and five in the 800 domain partition.  The knee 

parameter, k , is 200 and 50 respectively. 

Table 7.5 shows the corresponding error when quantizing the sentinel points as above.  The 

increase in PSNR over the that of the unquantized model is less than one dB for both 

partitions.  

Quantizer Step Size Coefficients 
16 549
32 313

Table 7.3 
Quantization Distribution 

100 Domain Lena 

Quantizer Step Size Coefficients 
2 1440
4 1062
8 1665

16 1467
32 1077

Table 7.4 
Quantization Distribution 

800 Domain Lena 
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7.6 Optimizing Quantized Sentinel Point Values 

The models extracted by the procedures of  Chapters 3 and 4 do not account for polynomial 

coefficient quantization.  Quantization introduces independent distortion that we can attempt 

to minimize by perturbing the values of sentinel points.  Table 7.6 shows the results of 

performing a simple greedy optimization procedure on the sentinel points of two Lena and two 

Cameraman partitions.  The PSNR is improved by an average of over .5 dB for each partition. 

The sentinel value optimization algorithm works by examining each sentinel point in turn and 

perturbing it into the next higher and next lower quantizer buckets.  Perturbations that lower 

the model’s MSE are kept and those that do not are discarded. 

The moment methods of Chapter 2 are used in this procedure.  The polynomial coefficients 

are recalculated after each sentinel point perturbation using the Cholesky method of Chapter 2 

on the moment set that contains only the sentinel points.  These coefficients together with the 

natural and forcing  moments of the full domain, are used in the error calculation.  Using this 

technique, moment perturbations can be accomplished in O( )1  time. 

7.7 Coding 

We predictively code the quantized sentinel point values.  Both the coded values and the 

prediction are specified in the quantizated data space.  In other words quantizer bucket differences 

Domains MSE RMS Error PSNR 
100 155.0 12.5 26.23 
800 30.10 5.49 33.35 

Table 7.5 
 Lena with Variable Quantization 

Image domains MSE PSNR Optimized MSE Optimized PSNR 
Lena 100 182.4 25.52 155.0 26.23
Lena 800 34.15 32.80 30.10 33.35
Cameraman 100 252.5 24.11 230.5 24.50
Cameraman 800 88.9 28.64 81.3 29.03

Table 7.6 
Optimizing Sentinel Point Values 
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are transmitted and applied to a predicted quantizer bucket.  Sentinel point difference values 

are transmitted for each domain in raster scan order 

7.7.1 Quantization Model 

In Section 7.4 we presented the quantization function used to apply quantization to sentinel 

point values: 

P
round P

Q
Q

Q
Q

step
step

step
  

( )

2
. 

When coding these quantized values, we transmit only the quantizer bucket into which the data 

point falls.  The quantizer bucket of a sentinel point, P , is developed using the forward 

quantization function: 

Q
round P

Qb
step


( )

. 

The quantized sentinel point value is recovered from a sentinel point bucket using the inverse 

quantization function: 

P Q Q
Q

Q b step

step
  

2
. 

7.7.2 Prediction 

The information necessary to specify the sentinel points of a domain is reduced via prediction.  A 

predicted value for each sentinel point is developed and the difference, Qd , between the 

prediction and the actual value is coded.  The predictor used is the average value of the 

previously decoded points of the same domain.  Using this simple intra predictor, the first point 

of each domain must be coded without prediction.   

As each Qd  is received it is added to the quantizer bucket, Qp , of the current prediction to 

calculate the quantizer bucket of the associated sentinel point, Qb .  Qb  is used to calculate PQ  
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via the inverse quantization function.  Each inverse quantized sentinel point is added to the 

sentinel point list for its domain and is also used to update the predictor.   

The predictor value is the running total of the PQ  values of the sentinel points received thus 

far for each domain.  Qp  is calculated from this running sum as needed by dividing by the 

number of points in the sum and applying the forward quantization function. 

Since sentinel point values can be variably quantized depending upon the size of their 

associated domain, there are several Qstep  values in use for each image.  There is one 

probability estimation context for each Qstep  in use.  The symbol probabilities of each Qstep  

context are used to reduce the entropy of the differences coded in that context.  Unpredictable 

information falls into a base context. 

The coding model for differentially coded sentinel point values is not yet complete..  A two-

pass, or n nlog2 , entropy estimate is used to obtain the data of the following section and that 

of Sections 2.3 and 8.3.  The two-pass entropy estimate is not attainable in practice and the 

sentinel point data should be viewed in that light.  There are two practical problems with the 

two-pass entropy measure.  First, symbol probability estimates are determined after all symbols 

have been counted.  Obviously, this cannot be done by a real decoder.  Second, possible 

symbols that do not occur anywhere in a simulated code stream do not contribute to the code 

string length.  In any practical coder, a minimum probability must be assigned to every possible 

symbol regardless of occurrence in a particular simulated code stream.  Any minimum 

probability assigned to symbols that do not appear increases the entropy of symbols that do 

appear in the code stream. 

7.7.3 Experiments 

Table 7.7 and Table 7.8 show sentinel point entropy for the 100 and 800 domain Lena 

examples. 
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Table 7.9 shows the total sentinel point information for these two examples. 

The sentinel point entropy for both of these examples is below 4 bits/point.  For the 100 

domain example, quantization can be heavy for all image domains since the piecewise-smooth 

model of which the sentinel points are a part has significant error before quantization is 

applied.  For the 800 domain example, many domains are quite small and can be quantized 

heavily without increasing visually perceived distortion.  Additionally, the large domains are 

smoother; the sentinel points of large domains are better predicted by the average predictor.  

The independent probability estimation contexts for each Qstep  take maximum advantage of 

this size/smoothness disparity. 

Context Sentinel Points Entropy 
base 962 3.12

16 549 3.16
32 313 2.90

Table 7.7 
Sentinel Point Entropy 

100 Domain Lena 

Context Sentinel Points Entropy 
base 7511 4.01

2 1440 5.02
4 1062 4.63
8 1665 3.90

16 1467 3.23
32 1077 2.63

Table 7.8 
Sentinel Point Entropy 

800 Domain Lena 

Domains Base Differential Total 
100 361 2641 3002 
800 3927 26219 30146 

Table 7.9 
Sentinel Point Information for Lena Examples 
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8. Coding Experiments 

The preceding chapters have developed machinery for building and representing piecewise 

smooth image models.  Up to this point we have looked at the behavior of each component of 

this machinery in isolation.  We now apply the entire machine to piecewise smooth coding of 

several Internet images.  We give simulated code data for four images: Miss America, Lena, 

Cameraman, and Baboon that are representative of a wide variety of image types.  We then 

compare the results with the JPEG standard.  Finally, we present some sample piecewise-

smooth partitions. 

8.1 Generating Piecewise-Smooth Image Models 

Before getting to the data, let’s recapitulate the components of the piecewise-smooth image 

model.  An extraction procedure partitions an image into domains, each of which is 

represented with a polynomial intensity function.  The order of the polynomial functions may 

be zero, one, two, or three, corresponding to one, three, six, or ten coefficients respectively. 

The desired model order is a parameter of the extraction procedure and is uniform for each 

image.  Of course, domains that contain fewer data points than coefficients have reduced 

model order.  Use of the Cholesky method of Chapter 3 to establish domain order has not 

been implemented for these simulations.  This means that for some smaller domains more 

sentinel points are transmitted than are needed to recover the domain’s intensity function. 

The cost function we use for domain extraction is 

  C MSE l    . 

The moment methods of Chapter 3 make MSE  calculations tractable.  We use the same cost 

function for both greedy domain growing and raster-break smoothing.  Actually, the cost 

functions are slightly different since l  is the change in boundary separators in the cost 

function for domain growing and is as defined in Table 5.3 for boundary smoothing. 



104 104

There is as yet no automated mechanism for choosing model extraction and quantization 

parameters for minimal distortion at a given bit rate.  The following parameters are adjusted to 

give a visually pleasing result at several binary multiples of 100 domains for each test image: 

 The global maximum model order. 
 The number of domains in the model. 
 The amount of noise suppression to apply during extraction. 
 The amount of smoothing to apply to the extracted domain boundaries. 
 The quantization applied to polynomial coefficients. 

Some general proportionality statements can be made about the parameters chosen.  As the bit 

rate decreases: 

 Higher model orders are used. 
 The extracted model is comprised of fewer domains. 
 More noise suppression is used in model extraction. 
 More smoothing is applied to domain boundaries. 
 Polynomial coefficients are quantized more heavily. 

Table 8.1 through Table 8.4 show the parameters used for domain extraction in the coding 

experiments of Section 8.3.  The first column of each table is the overall model order for the 

image.  The second column is the number of domains in each model.  The third column is the 

noise suppression factor used in the greedy domain-growing algorithm.  The fourth column is 

amount of raster-break smoothing applied.  In the fifth and sixth columns are the minimum 

and maximum quantizer step sizes used on the model’s sentinel points.  The size parameter 

used to distribute domains into the various quantizers is shown in the last column.  The D avg  

notation in the knee column indicates that the average domain size of the image model was 

used for k . 
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The proportionalities just described are evident in the parameter value data.  The exact values 

of these parameters are not critical and it is seldom necessary to use anything other than integer 

multiples of base values to achieve visually pleasing results.  The default knee parameter used 

by the sentinel point quantizer is just the model’s average domain size.  Since domain sizes are 

not normally uniformly distributed in an image model, a manually tuned (smaller) quantizer 

knee can often give superior results. 

OM  P  n   s  Ql  Qh  k  
3 100 128 1024 16 32 200 
3 200 64 768 8 32 100 
3 400 8 128 4 32 50 
3 800 8 64 2 32 50 
2 1600 8 64 4 16 20 
1 3200 8 64 4 16 20 

Table 8.1 
Domain Extraction Parameters for Lena 

OM  P  n   s  Ql  Qh  k  
3 100 64 1024 4 64 D avg  

2 200 64 256 4 32 D avg  

2 400 64 256 4 32 D avg  

2 800 64 256 4 32 D avg  

1 1600 64 128 4 32 D avg  

0 3200 8 64 2 32 D avg  
Table 8.2 

Domain Extraction Parameters for Cameraman 



106 106

Note how the level of quantization decreases as the model fidelity increases.  Quantization is 

heaviest for baboon, where image activity is high and quantization can be coarser before 

distortion is noticeable.  Miss America is quantized lightly at all bit rates shown.  This is due to 

the low-contrast, slowly varying features in the image.  Fortunately, since there are few abrupt 

intensity transistions in this image, prediction works well and low bit rates are attained with 

relatively little quantization. 

Experience working with piecewise-smooth image models indicates that an image’s  average local 

variance can be used to automatically establish near optimal values for all parameters except 

overall model order and domain count.  The domain count has a fairly linear relationship to 

model fidelity.  An automatic parameter selection mechanism based upon a user selected 

overall model order and quality factor (a.k.a. JPEG) certainly seems achievable. 

8.1.1 Coder Performance 

If N  is the number of pixels in the image being coded, B  is the total length of the partition 

extracted from the image and M  is the number of pixels moved during boundary smoothing, 

then the complexity bounds for the three main coder components are: 

OM  P  n   s  Ql  Qh  k  
3 100 8 128 2 16 200 
3 200 8 128 2 16 100 
3 400 8 64 2 16 50 
3 800 8 64 2 16 50 

Table 8.3 
Domain Extraction Parameters for Miss America 

OM  P  n   s  Ql  Qh  k  
3 100 1024 1024 16 64 200 
3 200 512 512 8 32 100 
3 400 256 256 8 32 50 
2 800 128 128 8 32 50 
2 1600 64 64 4 32 20 
1 3200 32 64 2 32 20 

Table 8.4 
Domain Extraction Parameters for Baboon 
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 Greedy domain growing:  O N N( log )2  

 Raster-break smoother:  O B M( )  

 Sentinel point location:  O B( )  

Since B  and M  are less than N , the overall complexity is dominated by domain growing.  

For the 256x256 and 352x288 images in this chapter, domain extraction takes an average of 62 

seconds on a 90 MHz Pentium® based personal computer. Smoothing is accomplished in less 

than 10 seconds.  Sentinel points are located in less than 1 second.  The extraction times for 

each image do not differ by more than 20%. 

8.2 Coding the Image Model 

Figure 8.1 is a block diagram of the simulated piecewise-smooth decoder.  Domain boundaries 

of the extracted model are coded using the stroke code of Chapter 6, and polynomial 

coefficients are coded using the sentinel point code of Chapter 7. 
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For each domain
 Factor the natural moment matrix and determine supported sentinel points
 Calculate sentinel point locations
 Decode the base domain value*

 Decode differentially coded sentinel values*

 Solve the sentinel point system for the domain’s approximating polynomial
 Use the domain’s approximating polynomial to calculate its pixel intensity values

Decode header information:
 Global Maximum polynomial order*

 Global Cholesky stability factor*

 Minimum quantizer*

 Maximum quantizer*

 Quantizer knee*

For each image pixel:
 Decode stroke location information*

For each boundary stroke:
 Decode chain start information if necessary*

 Decode chain direction information if necessary*

 Decode termination disambiguation information if necessary


Aggregate domains

*Indicates that information is needed from the encoder

When a stroke is found

No
more
pixels

 

Figure 8.1 
Decoder Functional Diagram 

The piecewise-smooth code has very little overhead.  Other than stroke and sentinel point 

information, only five integer values must be transmitted.  These global parameters are the 

maximum polynomial order of the model, the Cholesky stability parameter to use when 

factoring natural moment matrices, and three variable quantization parameters.  The 

quantization parameters are the minimum and maximum quantizers and the quantizer knee 

used for decoding sentinel points.  After decoding this header information the decoder 
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commences searching the image in raster order for stroke locations.  When one is found it is 

decoded. 

Once all strokes have been decoded, the image pixels are aggregated into domains.  The 

aggregation proceeds by scanning the image in raster order and recursively joining pixels that 

do not have a boundary separator between them.  The order in which domains are encountered 

in a raster scan determines the order of transmittal of sentinel point values. 

Once the domains are established, decoding proceeds one domain at a time.  First, a domain’s 

supported sentinel points are found by factoring its natural moment matrix.  Second, sentinel 

point locations are established using the sentinel point location algorithm of Chapter 7.  Next, 

sentinel point values are decoded.  After all sentinel points of a domain are decoded, the 

sentinel system is solved for the domain’s polynomial intensity function.  Once the polynomial 

function is available, the domain’s pixel intensity values are calculated. 

8.2.1 Decoder Performance 

The piecewise-smooth image model is carefully constructed to allow O N( )  decode.  The 

performance bottleneck for the simulated decoder used in these experiments is evaluation of 

the approximating polynomial for each pixel of the reconstructed image.  This operation takes 

less than 2 seconds on a 90 MHz Pentium® based personal computer for third order models 

and less than 1 second for simpler models.  In an actual decoder, the entropy coder may 

become the limiting performance factor. 

8.3 Data 

Table 8.5 is piecewise smooth code data for the Miss America (352x288 pixels) image.  Since it 

has fairly low contrast and few abrupt intensity discontinuities, this image is particularly easy to 

code for most techniques and the piecewise smooth method does well also.  Even at .09 

bits/pixel the results are visually pleasing.  Note how the boundary information is dominant at 

the lowest bit rates but becomes less so as the bit rate increases.  When the coefficient 

information becomes dominant, the model order can be reduced to maintain a balance.  Model 

order reduction occurs between the third and fourth lines of the table in this example. 
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Code data for a 256x256 pixel Lena is shown in Table 8.6.  The 100 domain partition is 

obviously distinguishable from the original but is visually pleasing nonetheless.  The fidelity is 

unprecedented for a rate of 0.136 bits/pixel on this image.  This image contains a large number 

of moderate contrast features and is quite difficult to code.  JPEG at this rate is really nothing 

but artifacts. 

Table 8.7 contains data for Cameraman.  This image has a large amount of high contrast 

periphery which the piecewise smooth method represents well, but with which JPEG has 

problems.  Again, at 100 domains the rendition is quite pleasing.  At 0.293 bits/pixel the only 

significant distortion is in the grass area, which of course is not efficiently represented by a 

smooth model.  Interestingly, the grass is rendered fairly well starting at 1600 domains. 

Domains Order Boundary 
Information

Coefficient 
Information

Total 
Information

Bit Rate PSNR

100 3 5317 4037 9354 0.092 37.11
200 3 6710 7693 14402 0.142 38.51
400 3 10397 13964 24361 0.240 39.75
800 2 15077 17029 32106 0.317 40.36

1600 2 23758 29955 53713 0.530 41.40
Table 8.5 

Piecewise Smooth Code Data 
Miss America 

Domains Order Boundary 
Information 

Coefficient 
Information

Total 
Information

Bit Rate PSNR

100 3 5911 3001 8912 0.136 26.23
200 3 8165 7158 15323 0.234 28.26
400 3 14903 15438 30340 0.463 31.12
800 3 21181 30145 51326 0.783 33.30

1600 2 29524 35258 64781 0.988 35.22
3200 1 44031 40709 84741 1.293 35.66

Table 8.6 
Piecewise Smooth Code Data 

Lena 
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Table 8.8 is data for Baboon, which is included because it is pathologically non-smooth (it is 

almost entirely texture).  Surprisingly, even Baboon is visually pleasing at 100 domains and at 

800 the rendition is becoming quite good.  What these results show is that even highly non-

smooth features can be rendered if enough domains are used.  Since the coefficients of each 

domain can be quite heavily quantized under these conditions, the representation can be more 

efficient than may be expected. 

8.4 Sample Partitions 

We now present some sample partitions used in our coding experiments.  Only the most 

interesting partitions are included.  The 100 domain Lena partition seen previously in Chapters 

5, 6, and 7 is not included here.  Figure 8.2 shows an interesting partition of Lena’s face and is 

exemplary of the power of the piecewise-smooth extraction method.  Figure 8.3 is a 100 

domain partition of the cameraman image.  The sky in this image is notoriously difficult to 

Domains Order Boundary 
Information 

Coefficient 
Information 

Total 
Information

Bit Rate PSNR

100 3 6155 2390 8545 0.130 24.50
200 2 9643 3479 13122 0.200 26.39
400 2 12999 6180 19179 0.293 27.28
800 2 16467 12419 28886 0.441 29.03

1600 1 25046 13566 38612 0.589 29.57
3200 0 44022 12554 56576 0.863 32.28

Table 8.7 
Piecewise Smooth Code Data 

Cameraman 

Domains Order Boundary 
Information 

Coefficient 
Information 

Total 
Information 

Bit Rate PSNR 

100 3 5589 2603 8192 0.125 21.42
200 3 10072 7120 17193 0.262 22.36
400 3 16211 14507 30717 0.469 23.29
800 2 31966 16104 48070 0.733 24.82

1600 2 46183 36033 82216 1.255 26.97
3200 1 61581 38217 99798 1.523 27.69

Table 8.8 
Piecewise Smooth Code Data 

Baboon 
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partition.  Note the single short boundary segment extending from the head to the top of the 

image.  This strategic behavior is typical. 

Figure 8.4 is included to show how additional domains fill in the cameraman image.  Figure 8.5 

shows how domains are allocated to simulate the hair and whiskers of the baboon image 

 
Figure 8.2 

Domain Boundaries 
200 Domain Lena  

 
Figure 8.3 

Domain Boundaries 
100 Domain Cameraman 



113 113

Figure 8.6 and Figure 8.7 show the excellent models developed for head and shoulders images.  

Again note the short boundary segments extending from the head to the top of the image. 

 
Figure 8.4 

Domain Boundaries 
400 Domain Cameraman 

 
Figure 8.5 

Domain Boundaries 
400 Domain Baboon 

 

Figure 8.6 
Domain Boundaries 

100 Domain Miss America 
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8.5 JPEG Comparison 

Figure 8.8 compares the rate distortion performance of JPEG and the piecewise smooth code 

on the Miss America image.  The piecewise smooth technique is superior up to 0.3 bits/pixel.  

At this point the only remaining distortion for both techniques is in their rendition of the 

overlying 2.5 bits of noise.  Although the parameter space for the piecewise smooth technique 

has not been fully searched for higher bit rates on this image, it appears that JPEG may 

perform better on this noise.  Fortunately, noise can easily be replaced by synthetic means at no 

additional cost.   

Figure 8.9 compares both techniques on Lena.  Again the piecewise smooth code is superior at 

low bit rates and remains competitive at higher bit rates.  The perceived distortion disparity 

between the techniques on this image is even greater than the measurements indicate.  The 

piecewise smooth code is doing quite well perceptually at 0.4 bits/pixel whereas noticeable 

JPEG artifacts do not disappear until near 1 bit/pixel. 

 

Figure 8.7 
Domain Boundaries 

200 Domain Miss America 
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Figure 8.10 shows how JPEG never really does get the high contrast edges right.  The 

piecewise smooth Cameraman results are superior to JPEG even at 1 bit/pixel.  Figure 8.11 

shows the surprising result that the piecewise smooth method is superior to JPEG even on the 

Baboon image.  Again the piecewise smooth technique performs better at low bit rates.  The 

superior performance at higher bit rates is inexplicable. 
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Figure 8.8 
Rate Distortion Comparison 

Miss America 
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Figure 8.9 
Rate Distortion Comparison 

Lena 
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Figure 8.10 
Rate Distortion Comparison 

Cameraman 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
20
21
22
23
24
25
26
27
28
29
30

JPEG
PSmooth

Bits/Pixel

P
S

N
R

 

Figure 8.11 
Rate Distortion Comparison 

Baboon 
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8.6 Summary 

We applied piecewise-smooth coding to several natural images.  We showed the piecewise-

smooth model extraction parameters used for each image.  We developed a simulated decoder 

consisting of the stroke code of Chapter 6 and the sentinel point code of Chapter 7 and 

presented coding results for each image.  We compared the piecewise-smooth code to the 

JPEG lossy image compression standard. Rate/distortion performance of the piecewise-

smooth code is superior to JPEG in many instances and is never significantly inferior  

The simulated data does not make use of the Cholesky method for determining supported 

sentinel points.  For this reason, some sentinel points are unnecessarily coded.  Once this 

shortcoming is addressed, the bit rate for a given distortion will be reduced.  The reduction 

should be most significant at higher bit rates where image models are comprised of mostly 

smaller regions. 
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9. Conclusion 

9.1 Main Contributions 

In Chapter 2 we introduce benchmark piecewise-quadratic synthetic images and use them to 

quantitatively evaluate a piecewise-smooth model extraction algorithm.  Both noise-free and 

noisy benchmarks are presented. 

In Chapter 3 we develop moment operators for use in finding least squares piecewise-

polynomial approximations of multidimensional data.  We introduce terminology for 

describing the components of multidimensional least squares normal equations.  The natural 

moment matrix is comprised of moments of the independent variables.  The forcing moment 

matrix is comprised of moments of both the independent and dependent variables.  We 

develop complete natural moment matrices, forcing moment matrices and least squares error 

functions for first, second, and third order two-dimensional polynomials.  We extend the 

Cholesky factorization of symmetric positive definite matrices to symmetric positive 

semidefinite matrices.  We use the modified Cholesky factorization to determine the 

polynomial coefficients supported by a domain. 

In Chapter 4 we develop a general greedy domain growing algorithm for image partitioning 

that can jointly optimize model complexity and model fidelity.  We apply the moment 

operators and error functions of Chapter 3 to the greedy cost function.  If N  is the number of 

pixels in the partitioned image, the computational complexity of the algorithm is bounded by 

O N N( log )2 . 

In Chapter 5 we develop the raster-break as a formal measure of boundary noise in an image 

partition and use it to design a state-machine boundary smoothing algorithm.  We apply the 

moment operators and error functions of Chapter 3 to the smoother’s cost function.  The 

computational complexity of the smoother is O N( ) . 

In Chapter 6 we develop a new chain code for representing the boundaries of a partitioned 

image.  The stroke code is  the first code to handle the three direction chain termination 
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problem on image partitions.  We apply the raster drawn boundary criteria of Chapter 5 to 

develop improved chain direction probability estimation contexts.  The stroke code is shown to 

be superior to raster neighbor codes on sparse image partitions. 

In Chapter 7 we develop a method of reconstructing approximating polynomials over arbitrary 

two-dimensional domains using approximated values at certain geometrically implicit points 

interior to each domain.  We call these points sentinel points.  If M  and N  are the maximum 

extent of a domain in each of its dimensions, we develop O M N( )  algorithms for finding 

optimal sentinel points. The number of sentinel points found for a domain corresponds to a 

global maximum polynomial order and is reduced by the number of unsupported polynomial 

terms.  The Cholesky method of Chapter 3 is the arbiter of a domain’s supported polynomial 

terms.  Using the natural moments of the sentinel points and the forcing moments of the 

original data, we develop an O( )1  algorithm for optimizing the quantized values of the sentinel 

points.  We develop a quality metric to experimentally evaluate the reconstructed polynomial 

when the sentinel point values are quantized.  We develop a method for coding polynomial 

functions over arbitrary two dimensional domains by applying quantization and differential 

predictive coding to each domain’s sentinel point values.  We use a simple global functional 

dependence to vary the amount of quantization applied to sentinel points based upon a 

domain’s size. 

In Chapter 8 we develop a complete code for representing piecewise-smooth image models.  

The stroke code of Chapter 6 and the sentinel point code of Chapter 7 are the main elements 

of the code.  We evaluate the code on several commonly available images.  Rate/distortion 

performance is superior to JPEG in many instances and is never significantly inferior. 

9.2 Future Work 

The data of Chapter 8 show that the piecewise smooth code is robust across a wide variety of 

images.  At times, it outperforms JPEG by a wide margin and the converse does not appear to 

be true.  What we haven’t yet discussed are the weaknesses of the method and possible areas of 

improvement. 
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First of all, the piecewise-smooth model extraction parameter space has not been searched 

systematically.  Second, both extraction and coding methods have not been fully analyzed.  The 

biggest remaining hole in the method is the incomplete coding model for sentinel point values. 

What’s really exciting is that good results have been achieved when there are still many areas of 

possible improvement.  Further, the piecewise-smooth image decomposition is an important 

new image segmentation algorithm and many related applications can be envisioned.  We next 

discuss just a few of the possible areas for improvement and extension of piecewise-smooth 

image modeling. 

9.2.1 Model Extraction 

The piecewise-smooth model extraction procedure could be improved in several ways.  Using 

the measures developed in Chapter 4, the noise suppression parameter of the domain 

extraction algorithm could be made proportional to boundary noise instead of boundary 

length.  Probably the single change that would most improve performance would be to weight 

model error using local variance.  The result would be better separation of textured and smooth 

image areas. 

Of larger significance is that the greedy domain growing algorithm is really more appropriate as 

the middle level of a hierarchical vision system.  Local image and domain structure could be 

used at a lower level to develop a seed partition that if used as input to the greedy procedure 

would lead to a more optimal overall result.  Additionally the high memory requirement for 

complete domain management would be lessened since the number of domains would be 

reduced prior to invoking the greedy procedure. 

9.2.2 Model Coding 

At the lowest bit rates, boundary information tends to dominate the overall code.  An approach 

that might work to lower boundary information in sparse partitions is multiscale chain coding.  

When coding at very low rates, it is not very clear whether or not just to start from a 

subsampled image.  If a multiscale approach was applied to the boundary code and additional 

information was needed for an excursion from an even boundary site, a quantitative tradeoff 
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with subsampling could be made.  At higher bit rates, a full investigation needs to be made to 

see whether additional context information can extend the stroke code to dense partitions or, if 

not, what other method might be preferred. 

The sentinel code simulation does not yet include the capability to systematically exclude 

coefficients in underdetermined domains that have more pixels than coefficients.  Adding this 

capability in a synergistic way with the extraction procedure would allow for implicit 

determination of optimal model order for each domain of a partition.  Optimal model order 

could also be made a function of domain size similarly to the size-variable quantization applied 

to domain sentinel points. 

A study of predictors for the sentinel code is needed.  Also, the sentinel code does not include 

prediction information from previously coded adjacent domains.  This inter-domain information 

would be most useful for reducing code string length at higher bit rates 

9.2.3 Extensions 

The most obvious area that needs to be addressed is color, both true color and color maps.  

Also, optimizations for black/white images could extend the method to more types of images.  

Texture analysis and synthesis also appear to be directly applicable to the method.  Finally, a 

mechanism for perturbing the model between frames of an image sequence would extend the 

method to motion estimated video. 
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